682 research outputs found
Directional approach to spatial structure of solutions to the Navier-Stokes equations in the plane
We investigate a steady flow of incompressible fluid in the plane. The motion
is governed by the Navier-Stokes equations with prescribed velocity
at infinity. The main result shows the existence of unique solutions for
arbitrary force, provided sufficient largeness of . Furthermore a
spacial structure of the solution is obtained in comparison with the Oseen
flow. A key element of our new approach is based on a setting which treats the
directino of the flow as \emph{time} direction. The analysis is done in
framework of the Fourier transform taken in one (perpendicular) direction and a
special choice of function spaces which take into account the inhomogeneous
character of the symbol of the Oseen system. From that point of view our
technique can be used as an effective tool in examining spatial asymptotics of
solutions to other systems modeled by elliptic equations
Decomposition driven interface evolution for layers of binary mixtures: I. Model derivation and stratified base states
A dynamical model is proposed to describe the coupled decomposition and
profile evolution of a free surface film of a binary mixture. An example is a
thin film of a polymer blend on a solid substrate undergoing simultaneous phase
separation and dewetting. The model is based on model-H describing the coupled
transport of the mass of one component (convective Cahn-Hilliard equation) and
momentum (Navier-Stokes-Korteweg equations) supplemented by appropriate
boundary conditions at the solid substrate and the free surface.
General transport equations are derived using phenomenological
non-equilibrium thermodynamics for a general non-isothermal setting taking into
account Soret and Dufour effects and interfacial viscosity for the internal
diffuse interface between the two components. Focusing on an isothermal setting
the resulting model is compared to literature results and its base states
corresponding to homogeneous or vertically stratified flat layers are analysed.Comment: Submitted to Physics of Fluid
Charge density waves enhance the electronic noise of manganites
The transport and noise properties of Pr_{0.7}Ca_{0.3}MnO_{3} epitaxial thin
films in the temperature range from room temperature to 160 K are reported. It
is shown that both the broadband 1/f noise properties and the dependence of
resistance on electric field are consistent with the idea of a collective
electrical transport, as in the classical model of sliding charge density
waves. On the other hand, the observations cannot be reconciled with standard
models of charge ordering and charge melting. Methodologically, it is proposed
to consider noise-spectra analysis as a unique tool for the identification of
the transport mechanism in such highly correlated systems. On the basis of the
results, the electrical transport is envisaged as one of the most effective
ways to understand the nature of the insulating, charge-modulated ground states
in manganites.Comment: 6 two-column pages, 5 figure
Analytical Study of Sub-Wavelength Imaging by Uniaxial Epsilon-Near-Zero Metamaterial Slabs
We discuss the imaging properties of uniaxial epsilon-near-zero metamaterial
slabs with possibly tilted optical axis, analyzing their sub-wavelength
focusing properties as a function of the design parameters. We derive in closed
analytical form the associated two-dimensional Green's function in terms of
special cylindrical functions. For the near-field parameter ranges of interest,
we are also able to derive a small-argument approximation in terms of simpler
analytical functions. Our results, validated and calibrated against a full-wave
reference solution, expand the analytical tools available for
computationally-efficient and physically-incisive modeling and design of
metamaterial-based sub-wavelength imaging systems.Comment: 25 pages, 9 figures (modifications in the text; two figures and
several references added
Multiple double-exchange mechanism by Mn-doping in manganite compounds
Double-exchange mechanisms in REAEMnO manganites (where
RE is a trivalent rare-earth ion and AE is a divalent alkali-earth ion) relies
on the strong exchange interaction between two Mn and Mn ions
through interfiling oxygen 2p states. Nevertheless, the role of RE and AE ions
has ever been considered "silent" with respect to the DE conducting mechanisms.
Here we show that a new path for DE-mechanism is indeed possible by partially
replacing the RE-AE elements by Mn-ions, in La-deficient
LaMnO thin films. X-ray absorption spectroscopy demonstrated
the relevant presence of Mn ions, which is unambiguously proved to be
substituted at La-site by Resonant Inelastic X-ray Scattering. Mn is
proved to be directly correlated to the enhanced magneto-transport properties
because of an additional hopping mechanism trough interfiling Mn-ions,
theoretically confirmed by calculations within the effective single band model.
The very idea to use Mn both as a doping element and an ions
electronically involved in the conduction mechanism, has never been foreseen,
revealing a new phenomena in transport properties of manganites. More
important, such a strategy might be also pursed in other strongly correlated
materials.Comment: 6 pages, 5 figure
Evolution of magnetic phases and orbital occupation in (SrMnO3)n/(LaMnO3)2n superlattices
The magnetic and electronic modifications induced at the interfaces in
(SrMnO)/(LaMnO) superlattices have been investigated
by linear and circular magnetic dichroism in the Mn L x-ray absorption
spectra. Together with theoretical calculations, our data demonstrate that the
charge redistribution across interfaces favors in-plane ferromagnetic (FM)
order and orbital occupation, in agreement with the
average strain. Far from interfaces, inside LaMnO, electron localization
and local strain favor antiferromagnetism (AFM) and
orbital occupation. For the high density of interfacial planes ultimately
leads to dominant FM order forcing the residual AFM phase to be in-plane too,
while for the FM layers are separated by AFM regions having
out-of-plane spin orientation.Comment: accepted for publication as a Rapid Communication in Physical Review
Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor
In this paper we provide a sufficient condition, in terms of only one of the
nine entries of the gradient tensor, i.e., the Jacobian matrix of the velocity
vector field, for the global regularity of strong solutions to the
three-dimensional Navier-Stokes equations in the whole space, as well as for
the case of periodic boundary conditions
Homogenization of oxygen transport in biological tissues
In this paper, we extend previous work on the mathematical modeling of oxygen
transport in biological tissues (Matzavinos et al., 2009). Specifically, we
include in the modeling process the arterial and venous microstructure within
the tissue by means of homogenization techniques. We focus on the two-layer
tissue architecture investigated in (Matzavinos et al., 2009) in the context of
abdominal tissue flaps that are commonly used for reconstructive surgery. We
apply two-scale convergence methods and unfolding operator techniques to
homogenize the developed microscopic model, which involves different unit-cell
geometries in the two distinct tissue layers (skin layer and fat tissue) to
account for different arterial branching patterns
Existence of global strong solutions to a beam-fluid interaction system
We study an unsteady non linear fluid-structure interaction problem which is
a simplified model to describe blood flow through viscoleastic arteries. We
consider a Newtonian incompressible two-dimensional flow described by the
Navier-Stokes equations set in an unknown domain depending on the displacement
of a structure, which itself satisfies a linear viscoelastic beam equation. The
fluid and the structure are fully coupled via interface conditions prescribing
the continuity of the velocities at the fluid-structure interface and the
action-reaction principle. We prove that strong solutions to this problem are
global-in-time. We obtain in particular that contact between the viscoleastic
wall and the bottom of the fluid cavity does not occur in finite time. To our
knowledge, this is the first occurrence of a no-contact result, but also of
existence of strong solutions globally in time, in the frame of interactions
between a viscous fluid and a deformable structure
On discretization in time in simulations of particulate flows
We propose a time discretization scheme for a class of ordinary differential
equations arising in simulations of fluid/particle flows. The scheme is
intended to work robustly in the lubrication regime when the distance between
two particles immersed in the fluid or between a particle and the wall tends to
zero. The idea consists in introducing a small threshold for the particle-wall
distance below which the real trajectory of the particle is replaced by an
approximated one where the distance is kept equal to the threshold value. The
error of this approximation is estimated both theoretically and by numerical
experiments. Our time marching scheme can be easily incorporated into a full
simulation method where the velocity of the fluid is obtained by a numerical
solution to Stokes or Navier-Stokes equations. We also provide a derivation of
the asymptotic expansion for the lubrication force (used in our numerical
experiments) acting on a disk immersed in a Newtonian fluid and approaching the
wall. The method of this derivation is new and can be easily adapted to other
cases
- …
