196 research outputs found

    Progress on optimizing miscanthus biomass production for the European bioeconomy:Results of the EU FP7 project OPTIMISC

    Get PDF
    This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthusbased value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eqC ha(-1) y(-1) and 429 GJ ha(-1)y(-1), respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of-78 epsilon t(-1) CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains

    Dose-escalation using intensity-modulated radiotherapy for prostate cancer - evaluation of quality of life with and without 18F-choline PET-CT detected simultaneous integrated boost

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In comparison to the conventional whole-prostate dose escalation, an integrated boost to the macroscopic malignant lesion might potentially improve tumor control rates without increasing toxicity. Quality of life after radiotherapy (RT) with vs. without <sup>18</sup>F-choline PET-CT detected simultaneous integrated boost (SIB) was prospectively evaluated in this study.</p> <p>Methods</p> <p>Whole body image acquisition in supine patient position followed 1 h after injection of 178-355MBq <sup>18</sup>F-choline. SIB was defined by a tumor-to-background uptake value ratio > 2 (GTV<sub>PET</sub>). A dose of 76Gy was prescribed to the prostate (PTV<sub>prostate</sub>) in 2Gy fractions, with or without SIB up to 80Gy. Patients treated with (n = 46) vs. without (n = 21) SIB were surveyed prospectively before (A), at the last day of RT (B) and a median time of two (C) and 19 month (D) after RT to compare QoL changes applying a validated questionnaire (EPIC - expanded prostate cancer index composite).</p> <p>Results</p> <p>With a median cut-off standard uptake value (SUV) of 3, a median GTV<sub>PET </sub>of 4.0 cm<sup>3 </sup>and PTV<sub>boost </sub>(GTV<sub>PET </sub>with margins) of 17.3 cm<sup>3 </sup>was defined. No significant differences were found for patients treated with vs. without SIB regarding urinary and bowel QoL changes at times B, C and D (mean differences ≤3 points for all comparisons). Significantly decreasing acute urinary and bowel score changes (mean changes > 5 points in comparison to baseline level at time A) were found for patients with and without SIB. However, long-term urinary and bowel QoL (time D) did not differ relative to baseline levels - with mean urinary and bowel function score changes < 3 points in both groups (median changes = 0 points). Only sexual function scores decreased significantly (> 5 points) at time D.</p> <p>Conclusions</p> <p>Treatment planning with <sup>18</sup>F-choline PET-CT allows a dose escalation to a macroscopic intraprostatic lesion without significantly increasing toxicity.</p

    Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

    Get PDF
    Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity

    MFSD2A Promotes Endothelial Generation of Inflammation-resolving Lipid Mediators and Reduces Colitis in Mice

    Get PDF
    Alterations in signaling pathways that regulate resolution of inflammation (resolving pathways) contribute to pathogenesis of ulcerative colitis (UC). The resolution process is regulated by lipid mediators, such as those derived from the \u3c9-3 docosahexaenoic acid (DHA), whose esterified form is transported by the major facilitator superfamily domain containing 2A (MFSD2A) through the endothelium of brain, retina, and placenta. We investigated if and how MFSD2A regulates lipid metabolism of gut endothelial cells to promote resolution of intestinal inflammation

    High weekly integral dose and larger fraction size increase risk of fatigue and worsening of functional outcomes following radiotherapy for localized prostate cancer

    Get PDF
    IntroductionWe hypothesized that increasing the pelvic integral dose (ID) and a higher dose per fraction correlate with worsening fatigue and functional outcomes in localized prostate cancer (PCa) patients treated with external beam radiotherapy (EBRT). MethodsThe study design was a retrospective analysis of two prospective observational cohorts, REQUITE (development, n=543) and DUE-01 (validation, n=228). Data were available for comorbidities, medication, androgen deprivation therapy, previous surgeries, smoking, age, and body mass index. The ID was calculated as the product of the mean body dose and body volume. The weekly ID accounted for differences in fractionation. The worsening (end of radiotherapy versus baseline) of European Organisation for Research and Treatment of Cancer EORTC) Quality of Life Questionnaire (QLQ)-C30 scores in physical/role/social functioning and fatigue symptom scales were evaluated, and two outcome measures were defined as worsening in >= 2 (WS2) or >= 3 (WS3) scales, respectively. The weekly ID and clinical risk factors were tested in multivariable logistic regression analysis. ResultsIn REQUITE, WS2 was seen in 28% and WS3 in 16% of patients. The median weekly ID was 13.1 L center dot Gy/week [interquartile (IQ) range 10.2-19.3]. The weekly ID, diabetes, the use of intensity-modulated radiotherapy, and the dose per fraction were significantly associated with WS2 [AUC (area under the receiver operating characteristics curve) =0.59; 95% CI 0.55-0.63] and WS3 (AUC=0.60; 95% CI 0.55-0.64). The prevalence of WS2 (15.3%) and WS3 (6.1%) was lower in DUE-01, but the median weekly ID was higher (15.8 L center dot Gy/week; IQ range 13.2-19.3). The model for WS2 was validated with reduced discrimination (AUC=0.52 95% CI 0.47-0.61), The AUC for WS3 was 0.58, ConclusionIncreasing the weekly ID and the dose per fraction lead to the worsening of fatigue and functional outcomes in patients with localized PCa treated with EBRT

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience

    A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort.

    Get PDF
    Background: REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using a deep learning algorithm to identify patient-specific features associated with the development of toxicity, and test the approach by attempting to validate previously published genetic risk factors. Methods: The study involved REQUITE prostate cancer patients treated with external beam radiotherapy who had complete 2-year follow-up. We used five separate late toxicity endpoints: ≥grade 1 late rectal bleeding, ≥grade 2 urinary frequency, ≥grade 1 haematuria, ≥ grade 2 nocturia, ≥ grade 1 decreased urinary stream. Forty-three single nucleotide polymorphisms (SNPs) already reported in the literature to be associated with the toxicity endpoints were included in the analysis. No SNP had been studied before in the REQUITE cohort. Deep Sparse AutoEncoders (DSAE) were trained to recognize features (SNPs) identifying patients with no toxicity and tested on a different independent mixed population including patients without and with toxicity. Results: One thousand, four hundred and one patients were included, and toxicity rates were: rectal bleeding 11.7%, urinary frequency 4%, haematuria 5.5%, nocturia 7.8%, decreased urinary stream 17.1%. Twenty-four of the 43 SNPs that were associated with the toxicity endpoints were validated as identifying patients with toxicity. Twenty of the 24 SNPs were associated with the same toxicity endpoint as reported in the literature: 9 SNPs for urinary symptoms and 11 SNPs for overall toxicity. The other 4 SNPs were associated with a different endpoint. Conclusion: Deep learning algorithms can validate SNPs associated with toxicity after radiotherapy for prostate cancer. The method should be studied further to identify polygenic SNP risk signatures for radiotherapy toxicity. The signatures could then be included in integrated normal tissue complication probability models and tested for their ability to personalize radiotherapy treatment planning
    corecore