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Abstract
Currently accepted pedotransfer functions show negligible effect of management-

induced changes to soil organic carbon (SOC) on plant available water holding capac-

ity (θAWHC), while some studies show the ability to substantially increase θAWHC

through management. The Soil Health Institute’s North America Project to Evaluate

Soil Health Measurements measured water content at field capacity using intact soil

cores across 124 long-term research sites that contained increases in SOC as a result

of management treatments such as reduced tillage and cover cropping. Pedotransfer

functions were created for volumetric water content at field capacity (θFC) and per-

manent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC

that were similarly accurate compared with Saxton and Rawls when tested on sam-

ples from the National Soil Characterization database. Further, the new pedotransfer

functions showed substantial effects of soil calcareousness and SOC on θAWHC. For

an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase

in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil tex-

ture classes was found. This SOC related increase in θAWHC is about double previous

estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil asso-

ciated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations

can aid in quantifying benefits of soil management practices that increase SOC and

can be used to model the effect of changes in management on drought resilience.

1 INTRODUCTION

If plant available water holding capacity (θAWHC) increases in
a meaningful way when soil organic carbon (SOC) increases,
the outcome is that management practices that increase SOC
in soils simultaneously change water retention by soils. This
change in water retention has implications for hydrology,
the energy balance, and crop production. Thus, a positive,
causal, relationship between SOC and θAWHC has direct ben-
efit through increased cropping system resilience to drought
and provides an incentive for the adoption of practices that
benefit society through climate change mitigation and adap-
tation (Lal, 2004; Lal, 2006; A. Williams et al., 2016; Yang
et al., 2014). Soil science literature is inconclusive on whether
this relationship exists to a meaningful degree in agricultural
soils. Some studies have demonstrated substantial improve-
ments in θAWHC as a result of increasing SOC (Ankenbaur &
Loheide, 2017; Bouyoucos, 1939; Hudson, 1994; Maynard,
2000; Salter & Howarth, 1961) and others have not (Bauer
& Black, 1992; Bell & Van Keulen, 1995; Feustal & Byers,
1936). A recent review concluded that the effect of SOC on
θAWHC was limited; a 10 g kg−1 increase in SOC concen-
tration resulted in a θAWHC increase of 1.2 mm 100 mm−1

soil (0.012 m3 m−3) across all soil textures (Minasny &
McBratney, 2018). Meanwhile, those that promote manage-
ment changes to improve soil health and functioning in agri-

cultural landscapes, such as drought resilience, are limited to
providing regional and anecdotal evidence that increased SOC
improves θAWHC.

While this debate is ongoing, researchers in disciplines like
hydrology and land surface modeling, are relying on existing
pedotransfer functions relating SOC to water characteristics.
Pedotransfer functions allow practical estimation of field and
laboratory soil measurements that are costly, time-consuming,
and can be impractical to measure (Bouma, 1989) using proxy
variables such as particle size, bulk density, and organic C
to predict soil hydraulic properties of interest (Wösten et al.,
2001). Soil scientists and engineers have a long history of
estimating soil water characteristics that are difficult to mea-
sure (Brooks & Corey, 1964; Campell, 1974; Rawls et al.,
1992; Van Genuchten, 1980) and early efforts demonstrated
that soil particle size could predict soil water characteristics
to provide adequate estimates for many decisions (Ahuja et al.,
1985; Arya & Paris, 1981; Gupta & Larson, 1979; Saxton et,
al.,1986; J. Williams et al., 1983). Early pedotransfer func-
tions were accurate, but many had limited geographic use
because they were based on regional data (Gijsman et al.,
2002).

Saxton and Rawls (2006) updated pedotransfer functions
(Saxton, Rawls, Romberger & Papendick, 1986) for volumet-
ric water content at field capacity (estimated by water retained
at −33 kPa) and permanent wilting point (estimated by water

mailto:dbagnall@soilheatlhinstitute.org
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retained at −1,500 kPa). The difference between volumetric
water content held at field capacity (θFC) and wilting point
(θPWP) estimates θAWHC. The Saxton and Rawls (2006) pedo-
transfer functions were created with approximately 2,000 soil
samples from A horizons obtained from the Natural Resource
Conservation Service (NRCS) National Soil Characterization
database (Soil Survey Staff, 2004). Saxton and Rawls (2006)
did not report the depth of A horizon used, but the depth
is likely well represented by the horizons in the National
Cooperative Soil Survey Characterization (NCSS) Microsoft
Access database, in which A master horizons were log nor-
mally distributed and ranged in depth from 0 to 60 cm with
a median depth of 13 cm. The pedotransfer functions were
fit using continuous sand, clay, and soil organic matter con-
tent and two-way interaction terms as predictor variables in a
multiple linear regression. To improve the fit, a second nonlin-
ear function was added resulting in two combined, dependent
equations for prediction of θFC and θPWP.

The accuracy and continental distribution of the input data
enabled these pedotransfer functions to be widely used (1,185
citations according to Scopus as of August 2021), while their
simplicity resulted in their incorporation into many models.
The high degree of use of these pedotransfer functions is
illustrated by the number of agronomic, ecological, hydro-
logical, land surface, and meteorological models listed in
publications that cite Saxton and Rawls (2006) including
the Soil Water Assessment Tool (SWAT), AquaCROP, Agri-
cultural Policy/Environmental eXtender (APEX), Noah-MP
land surface model, Soil-Plant-Air-Water (SPAW), Variable
Infiltration Capacity (VIC), TOPMODEL, Agricultural Pro-
duction System Simulator (APSIM), Annualized Agricul-
tural Non-Point Source Pollution Model (AnnAGNPS),
DeNitrification-DeComposition and DayCent. Because pedo-
transfer functions may be either hardcoded into models or
used in the data preparation step to generate model input, this
is not an exhaustive measure of the use of these functions.

Pedotransfer functions may be as simple as a look-up
tables or as complex as machine learning techniques, includ-
ing artificial neural networks and bootstrapping (Moosavi &
Sepaskhah, 2012), support vector machines (Twarakavi et al.,
2009), classification and regression trees (Pachepsky et al.,
2006), and random forests and boosted regression trees (Jorda
et al., 2015). Machine learning can provide more accurate
predictions (Jorda et al., 2015) but their complexity means
that the mathematical structure of the pedotransfer function
is not easily published. Pedotransfer functions built using
machine learning require software development to support
them (Zhang & Schaap, 2017) and reduce the ease of imple-
menting the function in larger computer models (Schaap et al.,
2004). A comparison of 11 pedotransfer functions with vary-
ing levels of complexity for water retention found no superior
model (Schaap, Nemes & van Genuchten, 2004), indicating
that simple models can be adequate.

Core Ideas
∙ New pedotransfer functions show organic C

increases plant available water.
∙ Noncalcareous soils show greater effects of organic

C on plant available water.
∙ Increase in plant available water from organic C is

more than double previous estimates.
∙ These pedotransfer functions can easily be used in

hydrologic models.
∙ A gap is bridged for modeling the effect of

increased soil organic C on plant available water.

Most existing pedotransfer functions include SOC (or
soil organic matter), but the effects of SOC on θAWHC are
reported as negligible (e.g., Saxton & Rawls, 2006; Minasny
& McBratney, 2018). There is a mismatch between soil sci-
ence textbooks and pedotransfer functions on the effects of
SOC on θAWHC. For example, a textbook by Brady and
Weil (2002) states that “Recognizing the beneficial effects of
organic matter on plant available water is essential to wise
soil management” indicating that SOC increases θAWHC to
a meaningful degree in terms of crop production, yet pedo-
transfer functions do not give such results. This discrepancy
could be explained by two nonmutually exclusive elements
of the underlying data. First, θFC measurements may lack
the effects of soil structure. This is particularly relevant for
soil samples that are dried and sieved prior to θFC measure-
ment. Disturbed soils may show the direct effect of SOC on
water retention, but do not capture the secondary effects of
SOC that manifest through soil structure because they do not
contain interpedal pores. It is preferable to use intact soil
clods or cores because they are more likely to capture both
direct effect of SOC on water retention and the secondary
effects of SOC that manifest through soil structure (Dane &
Hopmans, 2018; J. Williams et al., 1983). Soil organic C has
a strong link to soil structure (Bronick & Lal, 2005), and soil
structure is linked to pore size distribution, which affects soil
water at the macro scale (Nimmo & Akstin, 1988; Pachep-
sky & Rawls, 2003; J. Williams et al., 1983). Second, many
datasets may include measurements of intact soil structures
for building pedotransfer functions but were collected to rep-
resent changes between soil pedons (at the m scale) for the
purpose of mapping and inventory. Hence when considering
a given texture class, changes in SOC in such databases are not
primarily influenced by management, but rather the landscape
position and climate from which the soils were collected.

An additional consideration in creating pedotransfer func-
tions for θAWHC is the effect of calcareousness. Calcareous
soils have been reported to require more frequent irrigation
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than noncalcareous soils to achieve the same crop yield, indi-
cating that they may have lower θAWHC. Substantial amounts
of calcium carbonate have been found to lower water reten-
tion in repacked soil samples (Stakman & Bishay, 1975) and
to increase bulk density (Habel, 2014). It has been proposed
that presence of calcium carbonate may alter water retention
not only through changes in effective soil texture (e.g., car-
bonates the size of silicate clays), but also via alteration of soil
structure and pores (Jackson & Eire, 1973), although analysis
on intact samples would be needed to confirm such an effect.
We found, in this data set, a significant effect of calcium car-
bonate on predictions of θAWHC.

The Soil Health Institute’s North America Project to Eval-
uate Soil Health Measurements (NAPESHM) provided a
unique dataset to investigate whether increases in SOC as a
result of management correspond to increases in θAWHC. The
NAPESHM dataset contains a broad distribution of agricul-
tural soils, primarily managed for row crops, across the major
cropland regions of United States, Canada, and Mexico. Data
were collected on replicated experimental units (either plots
or fields that represent one replication of a treatment) under
long-term treatments (10 yr or more) within research sites
(n = 124). This approach is expected to capture variation in
SOC and measured θAWHC that are both management induced
(within pedons) and inherent (between pedons). Additionally,
θFC (estimated by water retained at −33 kPa) was measured
on intact cores, thus capturing the effect of SOC on the soil
matrix and bulk soil (including soil structure).

The goal of this work was to create a simple-to-implement
pedotransfer function for θAWHC that is sensitive to changes
in SOC. To meet our goal, we used simple linear regression
to fit functions for θFC and θPWP using NAPESHM data. We
assessed the accuracy of predicted θFC, θPWP, and θAWHC
(by subtraction of predicted θFC and θPWP) to the accuracy of
Saxton and Rawls (2006) on 1,797 soils from NCSS. The Sax-
ton and Rawls (2006) approach was chosen as a comparison
because of its ubiquity in hydrology and energy models, its
representation of similar geographical extent, and its simi-
lar simplicity of modeling approach. We also considered how
four levels of SOC affected predictions made by the new pedo-
transfer functions and compared these results to Saxton and
Rawls (2006) pedotransfer functions and literature.

2 MATERIALS AND METHODS

Data used to develop new pedotransfer functions were drawn
from the NAPESHM database, which captured a range in
climate, management practices, and inherent soil properties
using 124 long-term agricultural research sites across North
America and were uniformly sampled in 2019 (Norris et al.,
2020). Soil orders in the dataset included the Soil Taxon-
omy orders of Ultisol, Alfisol, Mollisol, Vertisol, Aridisol,

Inceptisol, and Entisol. The replicated treatments included
tillage, residue management, cover crop use and type, crop
rotation, grazing, and nutrient type and rate (including organic
amendments). At the time of sampling, most treatments in the
NAPESHM database were continuous for 10 or more years.

To develop new pedotransfer functions, we used mea-
surements of particle size distribution, SOC, inorganic
C, bulk density, and gravimetric water content measured
at field capacity (−33 kPa) and permanent wilting point
(−1,500 kPa). Soil particle size analysis, pH, and SOC were
measured at The Ohio State Soil Water and Environmental
Lab. Bulk density and all measures of water retention were
done at the Cornell Soil Health Laboratory (Ithaca, NY). Par-
ticle size distribution, SOC, and θPWP were measured using a
composite soil sample collected from 0-to-15-cm depth from
four to six sampling locations within each experimental unit
(Norris et al., 2020). The sieve and pipette method with three
size classes (2,000–50, 50–2, and <2 μm) was used to mea-
sure soil particle size distribution (Gee & Bauder, 1986). Total
C was measured by dry combustion (Nelson & Sommers,
1996) using an NC 2100 soil analyzer made by CE instru-
ments (Lakewood, NJ). Soils were oven dried and ground.
Soils with >7.2 pH (1:2, soil/water) (Thomas, 1996) were
tested for effervescence with 10% HCl. Those that effervesced
were analyzed for carbonates using the Chittick’s volumetric
calcimeter method (Dreimanis, 1962). For soils with carbon-
ates, SOC was calculated by subtracting the value of inorganic
C from total C obtained by dry combustion. For all other sam-
ples, total C obtained using dry combustion represented SOC.

In addition to the composite soil sample, four 7.6-cm diam.
soil cores were collected to a depth of 7.6 cm in each experi-
mental unit and maintained intact using a plastic sleeve. Two
of the four cores were kept intact for measuring bulk density
and θFC. The remaining two cores were composited into one
bag, sieved to remove coarse fragments >2 mm, and used to
calculate soil bulk density. For any sample with <2% coarse
fragments by weight (determined during preparation for par-
ticle size analysis), bulk density was calculated as the mean
bulk density of all four cores—two intact and two compos-
ited. Ninety percent of the experimental units in this study
had <2% coarse fragments by weight. For the remaining 10%
with coarse fragments >2% by weight, bulk density was cal-
culated as the mean of the two composited cores, following
removal of coarse fragments and adjustments for the weight
and volume of coarse fragments.

Gravimetric water content at permanent wilting point was
measured on pressure plates at 1,500 kPa (Reynolds & Topp,
2008) using repacked soil from the composite sample. Each
sample used 15 g of soil that was dried (105 ˚C), ground
(2-mm sieve), saturated, repacked, and equilibrated for 7 d on
the pressure plate at 1,500 kPa. Two replications were mea-
sured per experimental unit and the mean was calculated to
represent θPWP for each experimental unit. Gravimetric water
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content at field capacity was measured on both intact cores
using a tension table at 33 kPa (Hao et al., 2008; Topp et al.,
1993). The mean of the two intact cores represented the θFC
for each experimental unit. For the intact cores used to calcu-
late θFC, the cores were first saturated (4–7 d), equilibration
times on the tension table were between 4 and 7 d, and ref-
erence samples were used (weight recorded daily) for qual-
ity control. Both θFC and θPWP were calculated by multi-
plying gravimetric water content by the mean bulk density
of the experimental unit and assuming a density of water of
1.0 Mg m−3. Plant available water-holding capacity was cal-
culated as the difference between θFC and θPWP.

We removed extreme values from our analysis. Experimen-
tal units that were excluded were those with a mean bulk den-
sity >1.8 Mg m−3 and SOC concentrations >46.5 g kg−1.
No samples had mean bulk density of <1.0 Mg m−3. Our
threshold values for bulk density and SOC were the same
as those used to develop the Saxton and Rawls (2006) pedo-
transfer functions. The final NAPESHM dataset used in this
study included 1,731 samples for development of pedotrans-
fer functions. These 1,731 samples represented 547 unique
management treatments across 119 sites. Most sites (107) had
been managed continuously for 10 or more years, although
12 sites had at least one treatment that had been in place
for between 5 and 10 yr. Figure 1 shows the distribution of
site locations across North America, with Hargreaves’ mois-
ture deficit, to demonstrate the range in climatic conditions.
Eleven of the 12 USDA soil texture classes were represented
in the NAPESHM data used in this study (Table 1); sandy
clay textures were not represented. The most abundant tex-
ture classes were silt loam and loam. Soils were predomi-
nantly sampled in the United States, with 1,335 experimen-
tal units from 91 sites. Fifteen sites (237 experimental units)
were in Canada, and 13 sites (161 experimental units) were
in Mexico. Soil organic C ranged from 2 to 44 g kg−1 with
a median of 14 g kg−1. In total, 335 samples from 35 sites
effervesced when treated with 10% HCl. Few calcareous soils
had relatively high SOC; there were 63 experimental units
with >20 g kg−1 SOC, including 12 >30 g kg−1 SOC, and
3 >40 g kg−1 SOC (Figure 2a). For noncalcareous soils, there
were 322, 32, and 2 experimental units that were >20, 30,
and 40 g kg−1 SOC, respectively. Most of the noncalcare-
ous soils with greater SOC were between 10 and 40% clay
content (Figure 2a) and two experimental units were >30 g
kg−1 SOC and more than 40% clay. Calcareous soils were well
distributed across the observed clay contents and largely fol-
lowed the same trends as noncalcareous soils when θFC and
θPWP were plotted against clay content (Figure 2b,c). There
was greater variance in water content for θFC than for θPWP,
which is consistent with theory and practice (Pachepsky &
Rawls, 2003; Saxton & Rawls, 2006).

Hargreaves’ moisture deficit used for the map in this study
was generated with the ClimateNAv5.10 software package

(available at http://tinyurl.com/ClimateNA) based on method-
ology described by Wang et al. (2016). Hargreaves’ moisture
index has a value of zero for any month within a year that has
greater precipitation than reference evapotranspiration. For all
months in which the precipitation is less than reference evapo-
transpiration, the difference is summed to arrive at the annual
moisture deficit (mm).

To test the accuracy of the new pedotransfer functions, we
obtained data from 1,797 soils from the National Coopera-
tive Soil Survey Characterization (NCSS) database (http://
ncsslabdatamart.sc.egov.usda.gov/; Soil Survey Staff, 1995).
These data included sampling locations from 39 U.S. states.
All 12 USDA soil texture classes were represented in the non-
calcareous soils and 10 classes were represented within cal-
careous soils. Each horizon started at 0 cm and ended at or
before 15-cm depth and had measurements of bulk density
(volume measured at −33 kPa), gravimetric water content at
both permanent wilting point (−1,500 kPa) and field capacity
(at −33 kPa; clod method; Soil Survey Staff, 2014), and total
C, calcium carbonate, sand, and clay content. We multiplied
gravimetric water content by bulk density to obtain θFC and
θPWP. Soil organic C was calculated by subtracting the quan-
tity of inorganic C in carbonates from total C. The NCSS data
were developed with standard laboratory procedures (Klute,
1986; USDA-SCS, 1982).

We developed pedotransfer functions by initially fitting
multiple linear regression models to the NAPESHM data
using ordinary least squares for θFC and θPWP using clay, sand,
SOC content (all units are in 10 g kg−1, which is equivalent
to 1.0%), and all two-way interaction terms as predictor vari-
ables. To determine whether there was a significant differ-
ence in the predictions of the pedotransfer functions for soils
that were and were not calcareous, we conducted a one-way
ANOVA on the regression residuals using a categorical indi-
cator for effervescence when treated with HCl as the only fac-
tor. For all statistical analyses, R statistical software (R Devel-
opment Core Team, 2020) and α = .001 were used.

The ANOVA p value for the effect of calcareousness on
water content was significant for model predictions of θFC
(p = .03) but not for θPWP (p = .45). We fit separate mod-
els for calcareous soils (those that effervesced when treated
with HCl) and noncalcareous soils. We then used backwards
stepwise selection for each model by applying the step func-
tion from the stats package in R (Hastie & Pregibon, 1992).
For both calcareous and noncalcareous soils, stepwise selec-
tion for θFC models showed the lowest AIC for the full models
(clay, sand, SOC content, and all two-way interaction terms).
For calcareous soils, the θPWP model that had the lowest AIC
included clay, sand, and SOC content, and the two-way inter-
action terms for both SOC by sand content and SOC by clay
content. For calcareous soils, stepwise selection for the θPWP
model found that the lowest AIC resulted from clay, sand, and
SOC content, and the two-way interaction term between sand

http://tinyurl.com/ClimateNA
http://ncsslabdatamart.sc.egov.usda.gov/
http://ncsslabdatamart.sc.egov.usda.gov/
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F I G U R E 1 Soils were sampled at 124 sites for the North American Project to Evaluate Soil Health Measurements. The maps shows
Hargreaves’ climate moisture deficit for the 119 sites used in this study

and clay content. For each linear model, plots of model resid-
uals against model-fitted values and predictors were used to
verify equal error variance and the Breusch–Pagan test against
heteroskedasticity was also used. Plots of residuals vs. lever-
age (Cook’s distance cutoff of 0.5) were used to check for
influential values, and theoretical quantile-quantile plots were
used to check normality of the residuals.

To investigate whether θFC and θPWP were responding to
effects of soil management that were not manifested in SOC
changes, we plotted model residuals against aggregate sta-
bility measured with a Cornell rainfall simulator, the aver-
age Soil Tillage Intensity Rating (STIR, Karlen et al., 2008;
U.S. Department of Agriculture, 2019) calculated for the
past 5 yr, and categorical variables designating crop category
(row crop, perennial, integrated row crop and perennial, non-
farmed, or woody perennial) and nutrient type (none, organic,
synthetic, or synthetic and organic). We tested the strength of
the relationship between model residuals and these variables
(aggregate stability, STIR, crop category, nutrient type) using
regression for continuous variables and ANOVA for categor-
ical variables and found they did not explain substantial vari-
ance as shown by an R2 of .03 or less for each regression or
ANOVA. We reported the root mean square error (RMSE) and

adjusted R2 from regressions of predictions on measurements
for θFC, θPWP, and θAWHC

We predicted θFC and θPWP for 1,797 soils from the
NCSS database using both the new pedotransfer functions and
Saxton and Rawls (2006). We computed the deviation from
measured values (predicted-measured) and RMSE for θFC,
θPWP, and θAWHC (θAWHC calculated by subtraction) for both
pedotransfer function predictions by USDA particle size class.
We used a paired t test to determine significant differences
from measured water content for both pedotransfer functions.
Saxton and Rawls (2006) pedotransfer functions include an
organic matter parameter, but we used a SOC parameter.
Because the van Bemmelen factor (0.58) was used to convert
SOC to organic matter to develop the Saxton and Rawls (2006)
functions, we converted NCSS SOC values to organic matter
by multiplying SOC by the reciprocal of the van Bemmelen
factor.

To investigate the effect of SOC on predicted θAWHC,
we generated values that represent possible combinations of
SOC, clay, and sand content. These combinations of possible
SOC, clay, and sand content values were not measured soil
samples – rather they were created to evaluate a wide range of
sand, clay, and SOC content. Soil organic C values of 10, 20,
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T A B L E 1 Count of experimental units (n = 1,731) and sites
(n = 119) by USDA soil texture class. A single site may have multiple
soil texture classes, so the sum of sites shown is greater than the
number of sites in the study. Data shown is from North American
Project to Evaluate Soil Health Measurements

USDA soil texture class Sites Experimental units
Noncalcareous
Clay 7 17

Clay loam 20 148

Loam 34 265

Loamy sand 14 96

Sand 5 31

Sandy loam 26 193

Sandy clay loam 10 46

Silt 5 10

Silt loam 40 480

Silty clay 4 9

Silty clay loam 14 85

Calcareous
Clay 6 60

Clay loam 12 25

Loam 18 112

Sandy loam 4 20

Sandy clay loam 1 2

Silt loam 6 23

Silty clay 6 63

30, and 40 g kg−1 (1, 2, 3, and 4%) and clay and sand values
from 5 to 95% in 5% increments were used and repeated so
that each sand content was paired with every clay content and
every level of SOC; resulting in 760 combinations in all. We
used these combinations of SOC, clay, and sand content to
generated predictions of θFC and θPWP using the new pedo-
transfer functions (both noncalcareous and calcareous) and
Saxton and Rawls (2006) pedotransfer functions. Locally esti-
mated scatterplot smoothing (LOESS) curves were fit to the
predictions for each level of SOC for visual evaluation.

3 RESULTS AND DISCUSSION

The pedotransfer functions for volumetric water content at
θPWP and θFC are given in Equations 1 and 2 for noncalcare-
ous soils and in Equations 3 and 4 for calcareous, respectively.
All units are in 10 g kg−1.

θPWP = 7.222 + 0.296Clay − 0.074Sand − 0.309SOC

+ 0.022 (Sand × SOC) + 0.022 (Clay × SOC) (1)

F I G U R E 2 Organic C (%) and volumetric water content for
permanent wilting point (θPWP) and field capacity (θFC), plotted against
clay content. Data shown is from North American Project to Evaluate
Soil Health Measurements

θFC = 37.217 − 0.140Clay − 0.304Sand − 0.222SOC

+ 0.051 (Sand × SOC) + 0.085 (Clay × SOC)

+ 0.002 (Clay × Sand) (2)

θPWP,calc = 7.907 + 0.236Clay − 0.082Sand + 0.441SOC

+ 0.002 (Clay × Sand) (3)

θFC,calc = 33.351 + 0.020Clay − 0.446Sand + 1.398SOC

+ 0.052 (Sand × SOC) − 0.077 (Clay × SOC)

+ 0.011 (Clay × Sand) (4)
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F I G U R E 3 (a and b) Measured vs. predicted volumetric water
content at permanent wilting point (θPWP) (c and d) field capacity (θFC),
and (e and f) plant available water holding capacity (θAWHC) for (left)
noncalcareous and (right) calcareous soils. Measured values are from
the from North American Project to Evaluate Soil Health
Measurements and predicted values are from new pedotransfer
functions. Predictions of θAWHC are calculated by subtraction of
predicted θFC and θPWP. Regressions are significant (p value < .001).
Blue, solid lines are regression fits and black, dashed lines are
one-to-one. RMSE is root mean square error

All terms were significant or were nonsignificant main
effects that were retained as a component of a significant two-
way interaction. The nonsignificant main effect coefficients
are underlined in the equations above.

3.1 Accuracy of new pedotransfer functions

We used regressions between pedotransfer function predic-
tions and the measured NAPESHM data that was used to cre-
ate the models as one test of accuracy (Figure 3). Models for
predicting θPWP had better accuracy than for θFC, indicated by
R2 and RMSE. The models for noncalcareous soils performed
better than models for calcareous soils. The new pedotransfer

functions are near the lower end of RMSE values for water
retention predictions reported by Schaap et al. (2004), who
found that of the 11 modes they considered, mean RMSE was
between 3.2 and 6.9 mm 100 mm−1. The error was slightly
greater for θAWHC, ranging from 5.8 to 8.0 mm 100 mm−1.
Model performance of the Saxton and Rawls (2006) equa-
tions were also similar with R2 and RMSE of 0.86 and 2.0 mm
100 mm−1 for θPWP and 0.63 and 5.0 mm 100 mm−1 for θFC,
respectively. The lesser accuracy of the models for calcareous
soils is likely from two sources. One being fewer experimen-
tal units used in the fit; the calcareous fit had 335, while the
noncalcareous model had 1,396, and about 2,000 were used in
Saxton and Rawls (2006). Secondly, the physical complexity
of calcareous soils could also add to the poorer fit.

As a further test of accuracy and to provide context to
evaluate the new pedotransfer functions, the new pedotrans-
fer functions and Saxton and Rawls (2006) were used to cal-
culate predictions of θPWP, θFC, and θAWHC (by subtraction
of predicted θFC and θPWP) for 1,797 soils from the National
NCSS database. Because the Saxton and Rawls (2006) pedo-
transfer functions were developed using NCSS data includ-
ing θFC, it was expected that they would be more accurate
in this test compared with the new pedotransfer functions
using NAPESHM data including θFC. However, in general,
new pedotransfer functions for noncalcareous soils performed
similarly to Saxton and Rawls (2006) in regard to their RMSE
(Table 2), although there were differences between particle
size classes. Specifically, the new pedotransfer functions for
noncalcareous soils had smaller RMSE values than Saxton
and Rawls (2006) functions for θPWP, θFC, and θAWHC for
coarse texture classes (sand, loamy sand, sandy loam, and silt
loam). Saxton and Rawls (2006) functions had smaller RMSE
values for θPWP, θFC, and θAWHC in finer textures (silty clay
loam, sandy clay loam, clay loam, and all clays). For loams,
the new pedotransfer functions had smaller RMSE values
compared with Saxton and Rawls (2006) for θFC and θAWHC,
but not for θPWP, while in silts, the reverse was true (Table 2).
The greatest difference in RMSE magnitude for θAWHC of
noncalcareous soils occurred in clay where the RMSE of the
new pedotransfer functions was 3.3 mm 100 mm−1 greater
than the Saxton and Rawls (2006) pedotransfer functions
(Table 2). In calcareous soils, unlike noncalcareous soils,
RMSE values for the new pedotransfer functions were greater
in coarser textures; sand had an RMSE for θAWHC that was
7.4 mm 100 mm−1 greater compared with Saxton and Rawls
(2006) but both pedotransfer functions had a relatively large
RMSE for sand.

Deviations from measured NCSS data for both Saxton and
Rawls (2006) and new pedotransfer function predictions are
shown in Figure 4, and asterisks indicate that paired t tests
found significant differences between predicted and measured
water content (α = .001). In noncalcareous soils, the new
pedotransfer function predictions were significantly different
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T A B L E 2 Root mean square error (RMSE) values for volumetric
water content at permanent wilting point (θPWP), field capacity (θFC),
and plant available water holding capacity (θAWHC) predicted using both
Saxton and Rawls (2006) (S&R) and the new pedotransfer functions
using 1,797 soil samples from the National Cooperative Soil Survey
Characterization database. The RMSEs are grouped by USDA soil
texture classes and the number of samples (n) are shown for each
texture class

θPWP θFC θAWH

RMSE (mm 100 mm−1)
USDA soil
texture class n S&R New S&R New S&R New
Noncalcareous
Sand 39 3.4 2.3 10.2 7.8 7.9 6.9

Loamy sand 45 3.9 2.7 10.6 6.0 7.3 5.0

Sandy loam 169 7.3 6.5 13.6 9.0 8.3 5.8

Silt loam 273 4.9 4.0 8.9 6.0 6.3 5.4

Silt 4 3.6 2.1 5.6 6.1 5.4 6.6

Loam 198 4.5 4.9 9.6 7.3 7.0 5.2

Silty clay loam 201 2.8 4.7 4.2 5.2 4.7 4.8

Sandy clay loam 39 4.1 6.8 6.9 9.5 5.3 5.5

Clay loam 87 4.0 7.0 5.7 9.6 4.9 5.6

Silty clay 71 4.3 8.0 5.5 10.9 7.0 7.5

Sandy clay 10 3.1 8.4 4.8 13.6 4.9 7.0

Clay 113 5.2 8.1 5.1 14.0 5.1 8.4

Calcareous
Sand 5 3.0 2.1 18.3 25.7 17.1 24.5

Loamy sand 12 5.3 4.7 12.6 15.9 8.5 12.4

Sandy loam 88 3.4 3.2 9.7 11.0 8.5 10.2

Silt loam 77 7.8 6.3 11.6 10.0 10.4 10.6

Loam 88 5.1 4.8 10.9 10.7 12.8 12.9

Silty clay loam 62 4.8 5.5 6.4 5.8 4.8 4.9

Sandy clay loam 51 2.9 3.2 4.4 4.3 3.4 3.6

Clay loam 55 7.0 6.0 4.3 5.3 8.7 8.3

Silty clay 34 5.6 6.8 6.6 6.8 3.9 3.9

Clay 75 10.1 7.6 5.8 9.2 9.7 9.4

from θPWP measurements in 11 texture classes, and Saxton
and Rawls (2006) predictions were different for eight texture
classes (Figure 4a). In calcareous soils, both the new pedo-
transfer function predictions and Saxton and Rawls (2006)
were significantly different from θPWP measurements in four
texture classes (Figure 4b). For θFC, and in noncalcareous
soils, the new pedotransfer function predictions were signif-
icantly different from measurement in nine texture classes
and Saxton and Rawls (2006) were significantly different in
eight (Figure 4c). For calcareous soils, the new pedotrans-
fer functions were significantly different from measured θFC
in six texture classes and five for Saxton and Rawls (2006)
(Figure 4d). For the new pedotransfer functions, deviations

from NCSS measurements in θFC and θPWP had bias in the
same direction, and the bias was lost in subtraction when cal-
culating θAWHC. This resulted in improved performance for
θAWHC (Figure 4e,f). The new pedotransfer functions pre-
dictions for noncalcareous soil were different from measure-
ments in clay and silty clay loam textures, while Saxton and
Rawls (2006) predictions were different from measurements
in six texture classes (Figure 4e). For calcareous soils, both
pedotransfer functions were similarly different from NCSS
measurements in four to five texture classes (Figure 4f). For
θAWHC predictions, there was only one soil texture in which
new pedotransfer function predictions were different from
NCSS measurements. For noncalcareous soils, the difference
occurred in clay and in loamy sand for calcareous soil.

For noncalcareous soils, the largest mean deviation from
measured θAWHC was from Saxton and Rawls (2006) predic-
tions in sandy loams and was 5.9 mm 100 mm−1 (Figure 4e).
For calcareous soils, the largest mean deviation from mea-
sured θAWHC was from the new pedotransfer function in sand
and was 19.8 mm 100 mm−1 (Figure 4f). Sand was under-
represented in the model and the next highest mean devia-
tion (loamy sand) was half as large at 10.8 mm 100 mm−1.
The comparison to NCSS data points out the new pedotrans-
fer functions provided less accurate predictions of θPWP and
θFC than Saxton and Rawls (2006), but predictions of θAWHC
that were as or more accurate. The accuracy of the new
pedotransfer functions is notable and encouraging, given that
Saxton and Rawls (2006) functions were trained on NCSS
data all using the same laboratory methodology for measure-
ment (the clod method).

3.2 Effect of soil organic C on predicted
θAWHC

The point of presenting the new set of pedotransfer func-
tions is their greater response to increases in SOC relative to
existing equations. The overlapping of all four gold LOESS
fits in Figure 5a through 5f demonstrate that while organic
matter content is statistically significant in Saxton and Rawls
(2006) pedotransfer function there is little discernable change
in θPWP, θFC, and θAWHC as SOC varies (<0.074% volumetric
water content in response to an increase from 1 to 4% SOC
content). Conversely, the new pedotransfer functions show
changes in θPWP, θFC, and θAWHC with discernable changes
in SOC values. The LOESS curves fit to predictions of water
content show that changes in response to SOC were great-
est at θFC and least for θPWP (Figure 5). Earlier knowledge
described uniform effect of SOC on water retention (Jong,
1983; Riley,1981); however, our results agree with later find-
ings by Minasny & McBratney (2018) that changes in water
retention respond to SOC more for field capacity than for
permanent wilting point. This effect of SOC was more pro-
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F I G U R E 4 Deviation from measured (measured minus predicted) water contents. Measured data is from soil samples from the National
Cooperative Soil Survey Characterization database for permanent wilting point (θPWP), field capacity (θFC), and plant available water holding
capacity (θAWHC). Predicated values were generated with Saxton and Rawls (2006) and the new pedotransfer functions

nounced for noncalcareous soils. Importantly, the effect of
SOC on water retention was consistent across for all levels of
SOC, that is, a 10 g kg−1 increase in SOC produced the same
increase in volumetric water content regardless of the initial
SOC content (Figure 5).

For noncalcareous soils with clay content not represented
in the NAPESHM dataset (>60%) and SOC <20 g kg−1,
the new pedotransfer functions predicted negative changes
θAWHC values resulting from increased SOC. At these high
clay contents, greater SOC causes θPWP to increase at a greater
rate than θFC. This phenomenon was not expected, though
similar outcomes have been reported in pedotransfer func-
tions for saturated hydraulic conductivity (Ks). For example,

Nemes et al. (2005) found negative correlations between Ks
and organic matter increases in several pedotransfer functions
and the range of soils that exhibited this negative correla-
tion was dataset dependent. The pedotransfer function may be
improved by adding observations representing these greater
clay contents. At present, we recommend restricting clay con-
tents to 60% when using Equations 1 and 2, which is the same
range of clay content for the dataset used to create Saxton and
Rawls (2006) as well as other datasets, for example, UNSODA
(Nemes et al., 2001).

Increases in SOC for calcareous soils with >35% clay con-
tent are also not represented well in the new pedotransfer
functions, and there were only four calcareous experimental
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F I G U R E 5 LOESS fits to predicted volumetric water contents for
permanent wilting point (θPWP), field capacity (θFC), and plant available
water holding capacity (θAWHC) using simulated data for both new and
Saxton and Rawls (2006) pedotransfer functions. Lines for Saxton and
Rawls (2006) pedotransfer functions at the four levels of soil organic C
overlap

units that had 20 g kg−1 SOC or more. Because of this, we
conclude that the usefulness of the calcareous functions are to
illustrate that calcareous soils have different relationships with
water holding capacity than noncalcareous soils. This differ-
ence is not well discussed in the soil science literature and
needs more development. The new pedotransfer functions for
calcareous soils (Equations 3 and 4) is not useful in soils with
>35% clay, and we have limited Figure 3e and f accordingly.

It is notable that Saxton and Rawls (2006) pedotransfer
functions have similar predictions to the new pedotransfer
functions in situations of high and low clay content and cor-
respondingly low and high SOC. For example, the LOESS
curves fit to predictions in Figure 5c are all similar for 10 g
kg−1 SOC at 10% clay content and 40 g kg−1 SOC at 60%
clay content. We speculate that this is because SOC (and its
effects on θAWHC) in the NCSS data used to fit Saxton and
Rawls (2006) is not management induced. Rather, it is driven
largely by inherent properties so that, in essence, the effects of
SOC are indistinguishable from the effects of clay content. For

this reason, Saxton and Rawls (2006) pedotransfer functions
are not able to capture the effects of improved soil manage-
ment on θPWP, θFC, and θAWHC.

To quantify the effect of SOC on the new predictions, we
calculated summary statistics for predictions of θPWP, θFC,
and θAWHC using the same simulated soil samples to which
we fit LOESS curves. The summary statistics demonstrate
that effects of SOC on predicted θPWP, θFC, and θAWHC are
not constant across soil texture classes (Table 3). For non-
calcareous soils, the effect of increasing SOC is most promi-
nent in θAWHC, because of the combined effects at θPWP and
θFC. This absolute effect is largest for fine textured soils. For
example, changes in θAWHC due to increased SOC for fine
textured soils is 30% greater relative to the mean of all tex-
tures, and coarse soils are 30% less relative to the mean of
all textures. In calcareous soils, because SOC has no interac-
tion term with texture for θPWP, the effect of increasing SOC
is only in θFC. Coarse-textured calcareous soils have twice
the water retention due to increased SOC compared with the
mean of all textures (Table 3). Previous findings have shown
that the magnitude of change resulting from increases in SOC
was greatest in coarse-textured soil and least in fine-textured
soils for θPWP, θFC, and θAWHC (Hudson, 1994; Minasny &
McBratney, 2018). Our findings agree with past literature for
the repacked cores used to make new θPWP pedotransfer func-
tions, but our findings are not consistent with the literature for
noncalcareous soils for either θFC or θAWHC. The differences
between our study and previous work are likely caused by dif-
ferences in procedures, especially (a) the experimental design
of the NAPESHM dataset was developed to capture changes
in SOC and water retention due to management (treatment)
effects within sites as well as across sites; (b) previous studies
combined calcareous and noncalcareous soils, but we separate
them; and (c) differences in the θFC measurement methodol-
ogy from some past studies.

Increases in SOC can in some cases result in small reduc-
tions in predicted water content for the new pedotransfer
functions. For noncalcareous soils, there was one simulated
example of a silt (sand and clay at 5%) in which predicted
θPWP decreased with more SOC (Table 3). This negative
prediction was smaller than the RMSE (Equation 2) and
is represented as the minimum value for noncalcareous
θPWP predictions in medium textures soils in Table 3. For
calcareous soils, there were 25 simulated examples that
resulted in negative predicted changes in water content when
SOC increased and these contributes to the negative values
in Table 3 for calcareous soils. All were less than one-third of
the RMSE for their respective equations. Thus, the new pedo-
transfer functions can predict small decreases in water content
as the result of increased SOC. Given that the magnitude
of these predictions is less than the RMSE of the equations,
users may choose to interpret them as no change in water
content.
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T A B L E 3 Summary statistics for the effects of increase in soil
organic C for predicted volumetric water content at permanent wilting
point (θPWP), field capacity (θFC), and plant available water holding
capacity (θAWHC) using the new pedotransfer functions on simulated
data. For calcareous soils n = 270 and for noncalcareous soil n = 384.
Particle size group, clay, sandy clay, silty clay, clay loam and silty clay
loam are fine; loam, silt loam, silt, and sandy clay loam are medium;
and sand, loamy sand, and sandy loam are coarse

Change in water content (mm
100 mm−1) from 10 g kg−1 Increase
in soil organic C

Particle size group Min. Mean Max.
Noncalcareous
θPWP

Coarse 0.9 1.5 1.9

Medium –0.1 0.8 1.9

Fine 0.5 1.3 1.9

All –0.1 1.2 1.9

θFC

Coarse 2.8 4.2 5.2

Medium 0.5 3.1 5.9

Fine 2.6 5.1 7.0

All 0.5 4.1 7.0

θAWHC

Coarse 1.9 2.7 3.4

Medium 0.6 2.2 4.0

Fine 2.1 3.8 5.0

All 0.6 3.0 5.0

Calcareous
θPWP

Coarse 0.5 0.5 0.5

Medium 0.5 0.5 0.5

Fine 0.5 0.5 0.5

All 0.5 0.5 0.5

θFC

Coarse 3.0 4.1 5.6

Medium –0.2 1.7 3.3

Fine –0.9 0.2 1.2

All –0.9 2.0 5.6

θAWHC

Coarse 2.5 3.6 5.2

Medium –0.7 1.2 2.9

Fine –1.3 -0.3 0.8

All –1.1 1.5 5.2

For noncalcareous soils across texture classes, the increase
in θAWHC associated with a 10 g kg−1 increase in SOC ranged
from 3.0 to 5.0 mm 100 mm−1 (Table 3). In calcareous soils,
predicted changes in θAWHC from a 10 g kg−1 increase on SOC
were smaller on average, but some larger changes were pre-

dicted. The range was 1.6–5.5 mm 100 mm−1. For comparison
to these predicted changes, the mean change in θAWHC asso-
ciated with a 10 g kg−1 increase in SOC reported by Minasny
and McBratney (2018) was 1.2 mm 100 mm−1 across all tex-
tures. Thus, the mean effect of SOC on θAWHC reported by
Minasny and McBratney (2018) is about the same as our find-
ing for calcareous soil and about a third as large as our find-
ings for noncalcareous soils. We attribute the greater increase
in predicted θAWHC for the new pedotransfer functions to the
fact that NAPESHM data used to create the function captures
variance in SOC and measured θAWHC within pedons due to
management practices. Another source of improvement may
be the somewhat larger sample size for measures θFC; the
intact clods used by Saxton and Rawls (2006) would have been
approximately 8 × 6 × 6 cm so that they would fit snugly in
the clod box (Soil Science Division Staff, 2017). The volume
of a soil clod fitting in a clod box is approximately 72–78% of
the volume of the core used in this investigation.

This study demonstrates that, while there are cases in which
the magnitude of change in θAWHC resulting from increased
SOC will be negligible, other cases will show meaningful
benefits of increasing SOC. To illustrate how these changes
might be meaningful to crop production, a fine-textured soil
with a 20 g kg−1 increase in SOC would increase θAWHC by
7.6 mm 100 mm−1 (Table 3). Extending this to 150-mm depth
would result in 11.4 mm of additional plant available water.
Assuming that plants took up this 11.4 mm of additional water
and that it was recharged in five rainfall events throughout a
growing season, the additional water available to plants over
the growing season would be 57 mm (2.2 in, 570,000 L ha−1

yr−1). For reference as to whether this may be a meaningful
increase, an estimate for the amount of water that corn needs
for transpiration during the reproductive phase is about 5 mm
per day. To determine whether increases in θAWHC are mean-
ingful to stakeholders, considerations such as rainfall amount
and timing and planting and harvesting of crops should inform
situational analysis. This study enables such situational analy-
ses by making available new pedotransfer functions for θPWP,
θFC, and θAWHC that meaningfully respond to changes in SOC
that result from soil management.

4 CONCLUSIONS

The newly developed pedotransfer functions for soil water
retention have similar performance compared with previ-
ous models and is more sensitive to changes in SOC. The
new functions provided robust estimates for 1,731 surface
soils from the NCSS database. The magnitude of predicted
increases in θPWP, θFC, and θAWHC in response to increased
SOC was greater for noncalcareous soils, which showed
a mean increase in θAWHC across all texture classes that
was more than double that reported in earlier studies. The
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accuracy of new functions provides confidence that they are
suitable to incorporate into models. Because they demonstrate
a change in response to varying levels of SOC, they bridge the
long-standing discrepancy between soil science textbooks and
pedotransfer functions on the effects of SOC on θAWHC.

While there was broad representation in soil types in the
NAPESHM dataset used to develop the new pedotransfer
functions, there were some conditions with limited data to
train the model. For example, the functionality of the new
pedotransfer function for noncalcareous soil is limited to no
more than 60% clay. This study highlights the need for more
mechanistic investigation and pedotransfer function develop-
ment to understand water retention in calcareous soils.

The newly developed pedotransfer functions show substan-
tial effects of SOC on θAWHC and will enable future modeling
to illuminate scenarios for which changes in soil management
that result in increased SOC are likely to provide changes in
water supplied to plants by the soil that are meaningful for
stakeholders.
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