38 research outputs found

    Data-Driven Phenotyping of Central Disorders of Hypersomnolence With Unsupervised Clustering

    Get PDF
    Background and ObjectivesRecent studies fueled doubts as to whether all currently defined central disorders of hypersomnolence are stable entities, especially narcolepsy type 2 and idiopathic hypersomnia. New reliable biomarkers are needed, and the question arises of whether current diagnostic criteria of hypersomnolence disorders should be reassessed. The main aim of this data-driven observational study was to see whether data-driven algorithms would segregate narcolepsy type 1 and identify more reliable subgrouping of individuals without cataplexy with new clinical biomarkers.MethodsWe used agglomerative hierarchical clustering, an unsupervised machine learning algorithm, to identify distinct hypersomnolence clusters in the large-scale European Narcolepsy Network database. We included 97 variables, covering all aspects of central hypersomnolence disorders such as symptoms, demographics, objective and subjective sleep measures, and laboratory biomarkers. We specifically focused on subgrouping of patients without cataplexy. The number of clusters was chosen to be the minimal number for which patients without cataplexy were put in distinct groups.ResultsWe included 1,078 unmedicated adolescents and adults. Seven clusters were identified, of which 4 clusters included predominantly individuals with cataplexy. The 2 most distinct clusters consisted of 158 and 157 patients, were dominated by those without cataplexy, and among other variables, significantly differed in presence of sleep drunkenness, subjective difficulty awakening, and weekend-week sleep length difference. Patients formally diagnosed as having narcolepsy type 2 and idiopathic hypersomnia were evenly mixed in these 2 clusters.DiscussionUsing a data-driven approach in the largest study on central disorders of hypersomnolence to date, our study identified distinct patient subgroups within the central disorders of hypersomnolence population. Our results contest inclusion of sleep-onset REM periods in diagnostic criteria for people without cataplexy and provide promising new variables for reliable diagnostic categories that better resemble different patient phenotypes. Cluster-guided classification will result in a more solid hypersomnolence classification system that is less vulnerable to instability of single features

    Data-Driven Phenotyping of Central Disorders of Hypersomnolence With Unsupervised Clustering.

    Get PDF
    BACKGROUND AND OBJECTIVES Recent studies fueled doubts as to whether all currently defined central disorders of hypersomnolence are stable entities, especially narcolepsy type 2 and idiopathic hypersomnia. New reliable biomarkers are needed and the question arises whether current diagnostic criteria of hypersomnolence disorders should be reassessed. The main aim of this data-driven observational study was to see if data-driven algorithms would segregate narcolepsy type 1 and identify more reliable subgrouping of individuals without cataplexy with new clinical biomarkers. METHODS We used agglomerative hierarchical clustering, an unsupervised machine learning algorithm, to identify distinct hypersomnolence clusters in the large-scale European Narcolepsy Network database. We included 97 variables, covering all aspects of central hypersomnolence disorders such as symptoms, demographics, objective and subjective sleep measures, and laboratory biomarkers. We specifically focused on subgrouping of patients without cataplexy. The number of clusters was chosen to be the minimal number for which patients without cataplexy were put in distinct groups. RESULTS We included 1078 unmedicated adolescents and adults. Seven clusters were identified, of which four clusters included predominantly individuals with cataplexy. The two most distinct clusters consisted of 158 and 157 patients respectively, were dominated by those without cataplexy and, amongst other variables, significantly differed in presence of sleep drunkenness, subjective difficulty awakening and weekend-week sleep length difference. Patients formally diagnosed as narcolepsy type 2 and idiopathic hypersomnia were evenly mixed in these two clusters. DISCUSSION Using a data-driven approach in the largest study on central disorders of hypersomnolence to date, our study identified distinct patient subgroups within the central disorders of hypersomnolence population. Our results contest inclusion of sleep-onset rapid eye moment periods (SOREMPs) in diagnostic criteria for people without cataplexy and provide promising new variables for reliable diagnostic categories that better resemble different patient phenotypes. Cluster-guided classification will result in a more solid hypersomnolence classification system that is less vulnerable to instability of single features

    Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning

    Get PDF
    Narcolepsy is a rare life-long disease that exists in two forms, narcolepsy type-1 (NT1) or type-2 (NT2), but only NT1 is accepted as clearly defined entity. Both types of narcolepsies belong to the group of central hypersomnias (CH), a spectrum of poorly defined diseases with excessive daytime sleepiness as a core feature. Due to the considerable overlap of symptoms and the rarity of the diseases, it is difficult to identify distinct phenotypes of CH. Machine learning (ML) can help to identify phenotypes as it learns to recognize clinical features invisible for humans. Here we apply ML to data from the huge European Narcolepsy Network (EU-NN) that contains hundreds of mixed features of narcolepsy making it difficult to analyze with classical statistics. Stochastic gradient boosting, a supervised learning model with built-in feature selection, results in high performances in testing set. While cataplexy features are recognized as the most influential predictors, machine find additional features, e.g. mean rapid-eye-movement sleep latency of multiple sleep latency test contributes to classify NT1 and NT2 as confirmed by classical statistical analysis. Our results suggest ML can identify features of CH on machine scale from complex databases, thus providing 'ideas' and promising candidates for future diagnostic classifications.</p

    Decomposition of nitroimidazole ions: experiment and theory

    Get PDF
    International audienceNitroimidazoles are important compounds with chemotherapeutic applications as antibacterial drugs or as radiosensitizers in radiotherapy. Despite their use in biological applications, little is known about the fundamental properties of these compounds. Understanding the ionization reactions of these compounds is crucial in evaluating the radiosensitization potential and in developing new and more effective drugs. Thus, the present study investigates the decomposition of negative and positive ions of 2-nitroimidazole and 4(5)-nitroimidazole using low- and high-energy Collision-Induced Dissociation (CID) and Electron-Induced Dissociation (EID) by two different mass spectrometry techniques and is supported by quantum chemistry calculations. EID of [M+H]+ leads to more extensive fragmentation than CID and involves many radical cleavages including loss of H˙ leading to the formation of the radical cation, M˙+. The stability (metastable decay) and the fragmentation (high-energy CID) of the radical cation M˙+ have been probed in a crossed-beam experiment involving primary electron ionization of the neutral nitroimidazole. Thus, fragments in the EID spectra of [M+H]+ that come from further dissociation of radical cation M˙+ have been highlighted. The loss of NO˙ radical from M˙+ is associated with a high Kinetic Energy Release (KER) of 0.98 eV. EID of [M–H]− also leads to additional fragments compared to CID, however, with much lower cross section. Only EID of [M+H]+ leads to a slight difference in the decomposition of 2-nitroimidazole and 4(5)-nitroimidazole
    corecore