4,816 research outputs found

    Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 1: Computational technique

    Get PDF
    A numerical procedure has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second order accurate finite difference scheme is used to integrate the three dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool

    Limitations on the superposition principle: superselection rules in non-relativistic quantum mechanics

    Get PDF
    The superposition principle is a very basic ingredient of quantum theory. What may come as a surprise to many students, and even to many practitioners of the quantum craft, is tha superposition has limitations imposed by certain requirements of the theory. The discussion of such limitations arising from the so-called superselection rules is the main purpose of this paper. Some of their principal consequences are also discussed. The univalence, mass and particle number superselection rules of non-relativistic quantum mechanics are also derived using rather simple methods.Comment: 22 pages, no figure

    Inflation, Renormalization, and CMB Anisotropies

    Get PDF
    In single-field, slow-roll inflationary models, scalar and tensorial (Gaussian) perturbations are both characterized by a zero mean and a non-zero variance. In position space, the corresponding variance of those fields diverges in the ultraviolet. The requirement of a finite variance in position space forces its regularization via quantum field renormalization in an expanding universe. This has an important impact on the predicted scalar and tensorial power spectra for wavelengths that today are at observable scales. In particular, we find a non-trivial change in the consistency condition that relates the tensor-to-scalar ratio "r" to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n_t=0, is now compatible with a non-zero ratio r= 0.12 +/- 0.06, which is forbidden by the standard prediction (r=-8n_t). Forthcoming observations of the influence of relic gravitational waves on the CMB will offer a non-trivial test of the new predictions.Comment: 4 pages, jpconf.cls, to appear in the Proceedings of Spanish Relativity Meeting 2009 (ERE 09), Bilbao (Spain

    PMP and Climate Variability and Change: A Review

    Full text link
    [EN] A state-of-the-art review on the probable maximum precipitation (PMP) as it relates to climate variability and change is presented. The review consists of an examination of the current practice and the various developments published in the literature. The focus is on relevant research where the effect of climate dynamics on the PMP are discussed, as well as statistical methods developed for estimating very large extreme precipitation including the PMP. The review includes interpretation of extreme events arising from the climate system, their physical mechanisms, and statistical properties, together with the effect of the uncertainty of several factors determining them, such as atmospheric moisture, its transport into storms and wind, and their future changes. These issues are examined as well as the underlying historical and proxy data. In addition, the procedures and guidelines established by some countries, states, and organizations for estimating the PMP are summarized. In doing so, attention was paid to whether the current guidelines and research published literature take into consideration the effects of the variability and change of climatic processes and the underlying uncertainties.The authors would like to acknowledge the support of the Global Water Futures Program and the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN-2019-06894). The fourth author acknowledges the support of the Spanish Ministry of Science and Innovation, Project TETISCHANGE (RTI2018-093717-B-100). The first author appreciates the continuous support from the Scott College of Engineering of Colorado State University.Salas, JD.; Anderson, ML.; Papalexiou, SM.; Francés, F. (2020). PMP and Climate Variability and Change: A Review. Journal of Hydrologic Engineering. 25(12):1-16. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002003S1162512Abbs, D. J. (1999). A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation. Water Resources Research, 35(3), 785-796. doi:10.1029/1998wr900013Alexander, G. N. (1963). Using the probability of storm transposition for estimating the frequency of rare floods. Journal of Hydrology, 1(1), 46-57. doi:10.1016/0022-1694(63)90032-5Balkema, A. A., & de Haan, L. (1974). Residual Life Time at Great Age. The Annals of Probability, 2(5). doi:10.1214/aop/1176996548Beauchamp J. 2010. “Estimation d’une PMP et d’une CMP d’un bassin versant septentional en contexte de changements climatiques.” Ph.D. dissertation École de Technologie Supérieure Université du Québec.Ben Alaya, M. A., Zwiers, F., & Zhang, X. (2018). Probable Maximum Precipitation: Its Estimation and Uncertainty Quantification Using Bivariate Extreme Value Analysis. Journal of Hydrometeorology, 19(4), 679-694. doi:10.1175/jhm-d-17-0110.1Benson M. A. 1973. “Thoughts on the design of design floods. Floods and droughts.” In Proc. 2nd Int. Symp. in Hydrology 27–33. Fort Collins CO: Water Resources Publications.Botero, B. A., & Francés, F. (2010). Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models. Hydrology and Earth System Sciences, 14(12), 2617-2628. doi:10.5194/hess-14-2617-2010Canadian Dam Association. 2013. “Dam safety guidelines.” Accessed August 24 2020. https://www.cda.ca/EN/Publications_Pages/Dam_Safety_Publications.aspx.Casas, M. C., Rodríguez, R., Nieto, R., & Redaño, A. (2008). The Estimation of Probable Maximum Precipitation. Annals of the New York Academy of Sciences, 1146(1), 291-302. doi:10.1196/annals.1446.003Casas, M. C., Rodríguez, R., Prohom, M., Gázquez, A., & Redaño, A. (2010). Estimation of the probable maximum precipitation in Barcelona (Spain). International Journal of Climatology, 31(9), 1322-1327. doi:10.1002/joc.2149Casas-Castillo, M. C., Rodríguez-Solà, R., Navarro, X., Russo, B., Lastra, A., González, P., & Redaño, A. (2016). On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensity-duration-frequency equation and assessing probable maximum precipitation estimates. Theoretical and Applied Climatology, 131(1-2), 573-580. doi:10.1007/s00704-016-1998-0Castellarin, A., Merz, R., & Blöschl, G. (2009). Probabilistic envelope curves for extreme rainfall events. Journal of Hydrology, 378(3-4), 263-271. doi:10.1016/j.jhydrol.2009.09.030Chavan, S. R., & Srinivas, V. V. (2016). Regionalization based envelope curves for PMP estimation by Hershfield method. International Journal of Climatology, 37(10), 3767-3779. doi:10.1002/joc.4951Chen, X., & Hossain, F. (2018). Understanding Model-Based Probable Maximum Precipitation Estimation as a Function of Location and Season from Atmospheric Reanalysis. Journal of Hydrometeorology, 19(2), 459-475. doi:10.1175/jhm-d-17-0170.1Chen, X., & Hossain, F. (2019). Understanding Future Safety of Dams in a Changing Climate. Bulletin of the American Meteorological Society, 100(8), 1395-1404. doi:10.1175/bams-d-17-0150.1Chow, V. T. (1951). A general formula for hydrologic frequency analysis. Transactions, American Geophysical Union, 32(2), 231. doi:10.1029/tr032i002p00231Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. doi:10.1007/978-1-4471-3675-0COOKE, P. (1979). Statistical inference for bounds of random variables. Biometrika, 66(2), 367-374. doi:10.1093/biomet/66.2.367Cooley, D. (2009). Extreme value analysis and the study of climate change. Climatic Change, 97(1-2), 77-83. doi:10.1007/s10584-009-9627-xDawdy, D. R., & Lettenmaier, D. P. (1987). Initiative for Risk‐Based Flood Design. Journal of Hydraulic Engineering, 113(8), 1041-1051. doi:10.1061/(asce)0733-9429(1987)113:8(1041)Desa M., M. N., & Rakhecha, P. R. (2007). Probable maximum precipitation for 24-h duration over an equatorial region: Part 2-Johor, Malaysia. Atmospheric Research, 84(1), 84-90. doi:10.1016/j.atmosres.2006.06.005Dettinger, M. (2011). Climate Change, Atmospheric Rivers, and Floods in California - A Multimodel Analysis of Storm Frequency and Magnitude Changes1. JAWRA Journal of the American Water Resources Association, 47(3), 514-523. doi:10.1111/j.1752-1688.2011.00546.xDiaz A. J. K. Ishida M. L. Kavvas and M. L. Anderson. 2017. “Maximum precipitation estimation for five watersheds in the southern Sierra Nevada.” In Proc. 2017 World Environmental and Water Resources Congress 331–339. Reston VA: ASCE. https://doi.org/10.1061/9780784480618.032.Douglas, E. M., & Barros, A. P. (2003). Probable Maximum Precipitation Estimation Using Multifractals: Application in the Eastern United States. Journal of Hydrometeorology, 4(6), 1012-1024. doi:10.1175/1525-7541(2003)0042.0.co;2El Adlouni, S., Ouarda, T. B. M. J., Zhang, X., Roy, R., & Bobée, B. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research, 43(3). doi:10.1029/2005wr004545Elíasson, J. (1994). Statistical Estimates of PMP Values. Hydrology Research, 25(4), 301-312. doi:10.2166/nh.1994.0010Elíasson, J. (1997). A statistical model for extreme precipitation. Water Resources Research, 33(3), 449-455. doi:10.1029/96wr03531England, J. F., Jarrett, R. D., & Salas, J. D. (2003). Data-based comparisons of moments estimators using historical and paleoflood data. Journal of Hydrology, 278(1-4), 172-196. doi:10.1016/s0022-1694(03)00141-0Fernandes, W., Naghettini, M., & Loschi, R. (2010). A Bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions. Stochastic Environmental Research and Risk Assessment, 24(8), 1127-1143. doi:10.1007/s00477-010-0365-4Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24(2), 180-190. doi:10.1017/s0305004100015681Fontaine, T. A., & Potter, K. W. (1989). Estimating Probabilities of Extreme Rainfalls. Journal of Hydraulic Engineering, 115(11), 1562-1575. doi:10.1061/(asce)0733-9429(1989)115:11(1562)Foufoula-Georgiou, E. (1989). A probabilistic storm transposition approach for estimating exceedance probabilities of extreme precipitation depths. Water Resources Research, 25(5), 799-815. doi:10.1029/wr025i005p00799Francés, F. (1998). Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis. Stochastic Hydrology and Hydraulics, 12(4), 267-283. doi:10.1007/s004770050021Frances, F., Salas, J. D., & Boes, D. C. (1994). Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models. Water Resources Research, 30(6), 1653-1664. doi:10.1029/94wr00154Gao, M., Mo, D., & Wu, X. (2016). Nonstationary modeling of extreme precipitation in China. Atmospheric Research, 182, 1-9. doi:10.1016/j.atmosres.2016.07.014García-Marín, A. P., Morbidelli, R., Saltalippi, C., Cifrodelli, M., Estévez, J., & Flammini, A. (2019). On the choice of the optimal frequency analysis of annual extreme rainfall by multifractal approach. Journal of Hydrology, 575, 1267-1279. doi:10.1016/j.jhydrol.2019.06.013Gilroy, K. L., & McCuen, R. H. (2012). A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. Journal of Hydrology, 414-415, 40-48. doi:10.1016/j.jhydrol.2011.10.009Groisman, P. Y., Knight, R. W., & Zolina, O. G. (2013). Recent Trends in Regional and Global Intense Precipitation Patterns. Climate Vulnerability, 25-55. doi:10.1016/b978-0-12-384703-4.00501-3Gumbel, E. J. (1958). Statistics of Extremes. doi:10.7312/gumb92958Hershfield, D. M. (1965). Method for Estimating Probable Maximum Rainfall. Journal - American Water Works Association, 57(8), 965-972. doi:10.1002/j.1551-8833.1965.tb01486.xHershfield D. M. 1977. “Some tools for hydrometeorologists.” In Proc. 2nd Conf. on Hydrometeorology. Boston: American Meteorological Society.Hosking, J. R. M., & Wallis, J. R. (1997). Regional Frequency Analysis. doi:10.1017/cbo9780511529443Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. Technometrics, 27(3), 251-261. doi:10.1080/00401706.1985.10488049Houghton, J. C. (1978). Birth of a parent: The Wakeby Distribution for modeling flood flows. Water Resources Research, 14(6), 1105-1109. doi:10.1029/wr014i006p01105Hubert, P., Tessier, Y., Lovejoy, S., Schertzer, D., Schmitt, F., Ladoy, P., … Desurosne, I. (1993). Multifractals and extreme rainfall events. Geophysical Research Letters, 20(10), 931-934. doi:10.1029/93gl01245Hundecha, Y., St-Hilaire, A., Ouarda, T. B. M. J., El Adlouni, S., & Gachon, P. (2008). A Nonstationary Extreme Value Analysis for the Assessment of Changes in Extreme Annual Wind Speed over the Gulf of St. Lawrence, Canada. Journal of Applied Meteorology and Climatology, 47(11), 2745-2759. doi:10.1175/2008jamc1665.1Ishida, K., Kavvas, M. L., Jang, S., Chen, Z. Q., Ohara, N., & Anderson, M. L. (2015). Physically Based Estimation of Maximum Precipitation over Three Watersheds in Northern California: Atmospheric Boundary Condition Shifting. Journal of Hydrologic Engineering, 20(4), 04014052. doi:10.1061/(asce)he.1943-5584.0001026Ishida, K., Kavvas, M. L., Jang, S., Chen, Z. Q., Ohara, N., & Anderson, M. L. (2015). Physically Based Estimation of Maximum Precipitation over Three Watersheds in Northern California: Relative Humidity Maximization Method. Journal of Hydrologic Engineering, 20(10), 04015014. doi:10.1061/(asce)he.1943-5584.0001175Ishida, K., Ohara, N., Kavvas, M. L., Chen, Z. Q., & Anderson, M. L. (2018). Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air. Journal of Hydrology, 556, 1050-1063. doi:10.1016/j.jhydrol.2016.10.008Jakob D. R. Smalley J. Meighen B. Taylor and K. Xuereb. 2008. “Climate change and probable maximum precipitation.” In Proc. Water Down Under 109–120. Melbourne Australia: Engineers Australia Causal Productions.Katz, R. W. (2012). Statistical Methods for Nonstationary Extremes. Water Science and Technology Library, 15-37. doi:10.1007/978-94-007-4479-0_2Katz, R. W., Parlange, M. B., & Naveau, P. (2002). Statistics of extremes in hydrology. Advances in Water Resources, 25(8-12), 1287-1304. doi:10.1016/s0309-1708(02)00056-8Kharin, V. V., Zwiers, F. W., Zhang, X., & Hegerl, G. C. (2007). Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations. Journal of Climate, 20(8), 1419-1444. doi:10.1175/jcli4066.1Kijko, A. (2004). Estimation of the Maximum Earthquake Magnitude, m max. Pure and Applied Geophysics, 161(8), 1655-1681. doi:10.1007/s00024-004-2531-4Kim, I.-W., Oh, J., Woo, S., & Kripalani, R. H. (2018). Evaluation of precipitation extremes over the Asian domain: observation and modelling studies. Climate Dynamics, 52(3-4), 1317-1342. doi:10.1007/s00382-018-4193-4Koutsoyiannis, D. (1999). A probabilistic view of hershfield’s method for estimating probable maximum precipitation. Water Resources Research, 35(4), 1313-1322. doi:10.1029/1999wr900002Kundzewicz, Z. W., & Stakhiv, E. Z. (2010). Are climate models «ready for prime time» in water resources management applications, or is more research needed? Hydrological Sciences Journal, 55(7), 1085-1089. doi:10.1080/02626667.2010.513211Kunkel, K. E., Karl, T. R., Easterling, D. R., Redmond, K., Young, J., Yin, X., & Hennon, P. (2013). Probable maximum precipitation and climate change. Geophysical Research Letters, 40(7), 1402-1408. doi:10.1002/grl.50334Lan, P., Lin, B., Zhang, Y., & Chen, H. (2017). Probable Maximum Precipitation Estimation Using the Revised Km-Value Method in Hong Kong. Journal of Hydrologic Engineering, 22(8), 05017008. doi:10.1061/(asce)he.1943-5584.0001517Langousis, A., Veneziano, D., Furcolo, P., & Lepore, C. (2009). Multifractal rainfall extremes: Theoretical analysis and practical estimation. Chaos, Solitons & Fractals, 39(3), 1182-1194. doi:10.1016/j.chaos.2007.06.004Leclerc, M., & Ouarda, T. B. M. J. (2007). Non-stationary regional flood frequency analysis at ungauged sites. Journal of Hydrology, 343(3-4), 254-265. doi:10.1016/j.jhydrol.2007.06.021Lee, J., Choi, J., Lee, O., Yoon, J., & Kim, S. (2017). Estimation of Probable Maximum Precipitation in Korea using a Regional Climate Model. Water, 9(4), 240. doi:10.3390/w9040240Lenderink, G., & Attema, J. (2015). A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environmental Research Letters, 10(8), 085001. doi:10.1088/1748-9326/10/8/085001Lepore, C., Veneziano, D., & Molini, A. (2015). Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophysical Research Letters, 42(1), 74-83. doi:10.1002/2014gl062247López, J., & Francés, F. (2013). Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrology and Earth System Sciences, 17(8), 3189-3203. doi:10.5194/hess-17-3189-2013Loriaux, J. M., Lenderink, G., & Siebesma, A. P. (2016). Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes. Journal of Geophysical Research: Atmospheres, 121(10), 5471-5487. doi:10.1002/2015jd024274Machado, M. J., Botero, B. A., López, J., Francés, F., Díez-Herrero, A., & Benito, G. (2015). Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrology and Earth System Sciences, 19(6), 2561-2576. doi:10.5194/hess-19-2561-2015Markonis, Y., Papalexiou, S. M., Martinkova, M., & Hanel, M. (2019). Assessment of Water Cycle Intensification Over Land using a Multisource Global Gridded Precipitation DataSet. Journal of Geophysical Research: Atmospheres, 124(21), 11175-11187. doi:10.1029/2019jd030855Martins, E. S., & Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744. doi:10.1029/1999wr900330Mejia G. and F. Villegas. 1979. “Maximum precipitation deviations in Colombia.” In Proc. 3rd Conf. on Hydrometeorology 74–76. Boston: America Meteorological Society.Merz, R., & Blöschl, G. (2008). Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44(8). doi:10.1029/2007wr006744Micovic, Z., Schaefer, M. G., & Taylor, G. H. (2015). Uncertainty analysis for Probable Maximum Precipitation estimates. Journal of Hydrology, 521, 360-373. doi:10.1016/j.jhydrol.2014.12.033Mínguez, R., Méndez, F. J., Izaguirre, C., Menéndez, M., & Losada, I. J. (2010). Pseudo-optimal parameter selection of non-stationary generalized extreme value models for environmental variables. Environmental Modelling & Software, 25(12), 1592-1607. doi:10.1016/j.envsoft.2010.05.008Nathan, R., Jordan, P., Scorah, M., Lang, S., Kuczera, G., Schaefer, M., & Weinmann, E. (2016). Estimating the exceedance probability of extreme rainfalls up to the probable maximum precipitation. Journal of Hydrology, 543, 706-720. doi:10.1016/j.jhydrol.2016.10.044Nathan R. J. and S. K. Merz. 2001. “Estimation of extreme hydrologic events in Australia: Current practice and research needs.” Paper 13 in Proc. Hydrologic research needs for dam safety 69–77. Washington DC: FEMA.Nobilis, F., Haiden, T., & Kerschbaum, M. (1991). Statistical considerations concerning Probable Maximum Precipitation (PMP) in the Alpine Country of Austria. Theoretical and Applied Climatology, 44(2), 89-94. doi:10.1007/bf00867996NWS (National Weather Service). 2015. “Regions covered by different NWS PMP documents (as of 2015) (map).” Accessed May 1 2020. https://www.nws.noaa.gov/oh/hdsc/studies/pmp.html.Ohara, N., Kavvas, M. L., Anderson, M. L., Chen, Z. Q., & Ishida, K. (2017). Characterization of Extreme Storm Events Using a Numerical Model–Based Precipitation Maximization Procedure in the Feather, Yuba, and American River Watersheds in California. Journal of Hydrometeorology, 18(5), 1413-1423. doi:10.1175/jhm-d-15-0232.1Ohara, N., Kavvas, M. L., Kure, S., Chen, Z. Q., Jang, S., & Tan, E. (2011). Physically Based Estimation of Maximum Precipitation over American River Watershed, California. Journal of Hydrologic Engineering, 16(4), 351-361. doi:10.1061/(asce)he.1943-5584.0000324Papalexiou, S. M. (2018). Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency. Advances in Water Resources, 115, 234-252. doi:10.1016/j.advwatres.2018.02.013Papalexiou, S. M., AghaKouchak, A., & Foufoula‐Georgiou, E. (2018). A Diagnostic Framework for Understanding Climatology of Tails of Hourly Precipitation Extremes in the United States. Water Resources Research, 54(9), 6725-6738. doi:10.1029/2018wr022732Papalexiou, S. M., & Koutsoyiannis, D. (2006). A probabilistic approach to the concept of Probable Maximum Precipitation. Advances in Geosciences, 7, 51-54. doi:10.5194/adgeo-7-51-2006Papalexiou, S. M., & Koutsoyiannis, D. (2012). Entropy based derivation of probability distributions: A case study to daily rainfall. Advances in Water Resources, 45, 51-57. doi:10.1016/j.advwatres.2011.11.007Papalexiou, S. M., & Koutsoyiannis, D. (2013). Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resources Research, 49(1), 187-201. doi:10.1029/2012wr012557Papalexiou, S. M., & Koutsoyiannis, D. (2016). A global survey on the seasonal variation of the marginal distribution of daily precipitation. Advances in Water Resources, 94, 131-145. doi:10.1016/j.advwatres.2016.05.005Papalexiou, S. M., Koutsoyiannis, D., & Makropoulos, C. (2013). How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrology and Earth System Sciences, 17(2), 851-862. doi:10.5194/hess-17-851-2013Papalexiou, S. M., Markonis, Y., Lombardo, F., AghaKouchak, A., & Foufoula‐Georgiou, E. (2018). Precise Temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for Stationary and Nonstationary Processes. Water Resources Research, 54(10), 7435-7458. doi:10.1029/2018wr022726III, J. P. (1975). Statistical Inference Using Extreme Order Statistics. The Annals of Statistics, 3(1). doi:10.1214/aos/1176343003Rakhecha, P. R., Deshpande, N. R., & Soman, M. K. (1992). Probable maximum precipitation for a 2-day duration over the Indian Peninsula. Theoretical and Applied Climatology, 45(4), 277-283. doi:10.1007/bf00865518Rakhecha, P. R., & Soman, M. K. (1994). Estimation of probable maximum precipitation for a 2-day duration: Part 2 ? north Indian region. Theoretical and Applied Climatology, 49(2), 77-84. doi:10.1007/bf00868192Rastogi, D., Kao, S., Ashfaq, M., Mei, R., Kabela, E. D., Gangrade, S., … Anantharaj, V. G. (2017). Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama‐Coosa‐Tallapoosa River Basin. Journal of Geophysical Research: Atmospheres, 122(9), 4808-4828. doi:10.1002/2016jd026001Reed D. W. and E. J. Stewart. 1989. “Focus on rainfall growth estimation.” In Proc. 2nd National Hydrology Symp. Sheffield UK: British Hydrological Society.Rezacova, D., Pesice, P., & Sokol, Z. (2005). An estimation of the probable maximum precipitation for river basins in the Czech Republic. Atmospheric Research, 77(1-4), 407-421. doi:10.1016/j.atmosres.2004.10.011Rouhani, H., & Leconte, R. (2016). A novel method to estimate the maximization ratio of the Probable Maximum Precipitation (PMP) using regional climate model output. Water Resources Research, 52(9), 7347-7365. doi:10.1002/2016wr018603Rouha

    A review of early influences on physical activity and sedentary behaviors of preschool‐age children in high‐income countries

    Get PDF
    Purpose: Promoting physical activity (PA) is a key component of preventing and controlling childhood obesity. Despite well‐documented benefits of PA, globally, rates of PA among young children have declined over the past decades, and most children are not accruing sufficient PA daily. Helping children develop the foundation for PA habits early in life is critical for the promotion of health in childhood and prevention of chronic diseases later in life, and will ultimately promote longer and healthier lives for individuals and the general population. The purpose of this review is to provide a synthesis of current evidence on influences on PA and sedentary behaviors of preschool‐age children in high‐income countries. Design and Methods: A systematic review of three databases was performed. Studies conducted in high‐income countries and published from 2000 onward that addressed influences on PA and sedentary behaviors of preschool‐age children were identified and reviewed. Additionally, reference lists of identified articles and relevant published reviews were reviewed. Studies that met the following inclusion criteria were considered: (a) sample included preschoolers (age ≤5 years); (b) PA and/or sedentary behaviors or factors associated with PA and/or sedentary behaviors was assessed; (c) published in English; (d) used either quantitative or qualitative methods; and (e) conducted in a high‐income country. Data were extracted from selected studies to identify influences on PA and sedentary behaviors of preschool‐age children and organized using the social–ecological model according to multiple levels of influence. Results: Results from included studies identify multiple factors that influence PA and sedentary behaviors of young children in high‐income countries at the various levels of the social–ecological model including intrapersonal, interpersonal, environmental, organizational, and policy. Practice Implications: Given pediatric nurses’ role as primary care providers, and their frequent and continued contact with parents and their children throughout childhood through well‐child visits, immunization, and minor acute illnesses, they are well positioned to promote and support the development of early healthful PA habits of children starting in early childhood

    Encapsulation of gold nanostructures and oil-in-water nanocarriers in microgels with biomedical potential

    Get PDF
    Indexación: Scopus.Funding: This research was funded by FONDECYT 1161450, 1150744, 11130494 and 1170929, FONDEQUIP EQM160157, EQM170111, CONICYT-FONDAP 15130011, and CONICYT PhD Scholarship 21141137.Here we report the incorporation of gold nanostructures (nanospheres or nanorods, functionalized with carboxylate-end PEG) and curcumin oil-in-water (O/W) nanoemulsions (CurNem) into alginate microgels using the dripping technique. While gold nanostructures are promising nanomaterials for photothermal therapy applications, CurNem possess important pharmacological activities as reported here. In this sense, we evaluated the effect of CurNem on cell viability of both cancerous and non-cancerous cell lines (AGS and HEK293T, respectively), demonstrating preferential toxicity in cancer cells and safety for the non-cancerous cells. After incorporating gold nanostructures and CurNem together into the microgels, microstructures with diameters of 220 and 540 µm were obtained. When stimulating microgels with a laser, the plasmon effect promoted a significant rise in the temperature of the medium; the temperature increase was higher for those containing gold nanorods (11–12 ◦ C) than nanospheres (1–2 ◦ C). Interestingly, the incorporation of both nanosystems in the microgels maintains the photothermal properties of the gold nanostructures unmodified and retains with high efficiency the curcumin nanocarriers. We conclude that these results will be of interest to design hydrogel formulations with therapeutic applications. © 2018 by the authors.https://www.mdpi.com/1420-3049/23/5/120

    The internationalisation of the Spanish SME sector

    Get PDF
    As part of a wider research program, we analysed the theoretical framework and the recent developments of the process of internationalisation (transnationalisation) of the small- and medium-sized enterprises in Spain. The paper highlights the main trends and barriers of this internationalisation process. Methodology included document analyses, interviews, and the analyses of statistical databases

    Dynamic Critical Behavior of the Swendsen-Wang Algorithm: The Two-Dimensional 3-State Potts Model Revisited

    Get PDF
    We have performed a high-precision Monte Carlo study of the dynamic critical behavior of the Swendsen-Wang algorithm for the two-dimensional 3-state Potts model. We find that the Li-Sokal bound (τint,Econst×CH\tau_{int,E} \geq const \times C_H) is almost but not quite sharp. The ratio τint,E/CH\tau_{int,E} / C_H seems to diverge either as a small power (0.08\approx 0.08) or as a logarithm.Comment: 35 pages including 3 figures. Self-unpacking file containing the LaTeX file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and eqsection.sty) and the 3 Postscript figures. Revised version fixes a normalization error in \xi (with many thanks to Wolfhard Janke for finding the error!). To be published in J. Stat. Phys. 87, no. 1/2 (April 1997

    Dynamic and static properties of the invaded cluster algorithm

    Full text link
    Simulations of the two-dimensional Ising and 3-state Potts models at their critical points are performed using the invaded cluster (IC) algorithm. It is argued that observables measured on a sub-lattice of size l should exhibit a crossover to Swendsen-Wang (SW) behavior for l sufficiently less than the lattice size L, and a scaling form is proposed to describe the crossover phenomenon. It is found that the energy autocorrelation time tau(l,L) for an l*l sub-lattice attains a maximum in the crossover region, and a dynamic exponent z for the IC algorithm is defined according to tau_max ~ L^z. Simulation results for the 3-state model yield z=.346(.002) which is smaller than values of the dynamic exponent found for the SW and Wolff algorithms and also less than the Li-Sokal bound. The results are less conclusive for the Ising model, but it appears that z<.21 and possibly that tau_max ~ log L so that z=0 -- similar to previous results for the SW and Wolff algorithms.Comment: 21 pages with 12 figure
    corecore