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DEVELOFMENT OF A COMPUTER CODE FOR CALCULATING THE
STEADY SUPER/HYPERSONIC INVISCID FLOW AROUND

REAL CONFIGURATIONS

VOLUME 1 - COMPUTATIONAL TECHNIQUE

by
F, Marconi, M.D. Salas and L.S. Yaeger

GRUMMAN AEROSAPCE CORPORATION
SUMMARY

A numerical procedure has been developed to compute the inviscid super/
hypersonic flow field about complex vehicle geometries accurately and effi-
ciently. A second-order accurate finite difference scheme is used to integrate
the three-dimensional Euler equations in regions of continuous flow, while all
shock waves are computed as discontinuities via the Rankine-Hugoniot jump
conditions. Conformal mappings are used to develop a computational grid. The
effects of blunt nose entropy layers are computed in detail. Real gas effects

for equilibrium air are included using curve fits of Mollier charts.

Typical calculated results for shuttle orbiter, hypersonic transport and
supersonic aircraft configurations are included to demonstrate the usefulness

of this tool.

A computer code utilizing this computational procedure is described in

Volume ITI of this report.
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NOMENCTATURE

SYMBOLS

A,B,C,D,E, F Coefficients of the mappings

a Speed of sound

b(e,;) Radius of the body in the mapped space

B(Y,2) Radius of the body in the mapped space as a function
of the computational coordinates

cp Specific heat at constant pressure

¢y ' Specific heat at constant volume

c(8,2) Radius of a wing type shock in the mapped space

CA Axial force coefficient (along F.R.L.)

CD Drag coefficient

c,(¥,2) c,(1,2) =T, (v,2) 25121 +1
and Cl(Y,Z) = B(Y,2)

CL Lift coefficient

CM Moment coefficient

Cy Normal force coefficient (normal to F.R.L.)

BL(Y,Z) Radius of #th shock (wing type) in the mapped space

h(r,2) 6 = h(r,;) defines a cross flow shock in the mapped
space

h,, hy, hy Metric coefficients (Fig. 26)

HO Stagnation or total enthalpy

Hi(X,Z) 6 = Hi(X,Z) on cross flow type surface i (i =1, 0 =
-n/2 & i = IC+1, 8 = w/2) in the mapped space

Q,ﬁ,ﬁ Cartesian unit vectors (Fig. 4)

20k

Unit vectors associated with intrinsic shock coordinate

-

system
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SYMBOLS

Ic

LC

MC(i)

I‘,G,;

Re

Nt
r,e8',z

NOMENCIATURE (Continued)

Number of circumferential regions in cross section
Imaginary part
Total number of radial regions in cross section

Mach number or mesh point counter in circumferential

direction (Fig. 11)

Total number of mesh points in circumferential region

i (Fig. 11)
Mesh point counter in circumferential regions (Fig. 11)
Mesh point counter in radial direction (Fig. 11)

Total number of mesh points in radial region 4
(Fig. 11)

Mesh point counter in radial regions (Fig. 11)
Pressure (non-dimensionalized with respect to ﬁm)
n(p/p,)

Coordinates in the mapped space

Real part

Coordinates used in geometry interrogation (Fig. 5)
Nose radius

Arc length‘(surface distance)

Entropy (non-dimensionalized with respect to CVw)

8 = (8-8=)/cy

Temperature (non-dimensionalized with respect to f;)

di

(@]
o
I—l .
e}
=

s
O
!?
E-l
0]
o]

]

Velocity components in the x,y,

Z re
- sionalized with respect to/p 7pm5 (Fig. 4)

Intrinsic velocity components



NOMENCLATURE (Continued)

SYMBOLS

wl,wg,w3,wh,w5 Intermediate mapped spaces (Eq. 1, Fig. 10)

X,¥,2 Cartesian coordinates (left-handed system, non-
dimensionalized with respect to an arbitrary length %)

X,Y,Z Coordinates in the computational space

o Angle of attack

y Ratio of specific heats, cp/cv

r a2/¢, effective vy

C Mapped space (Eq. 1 & Fig. 10)

A Characteristic slore

A Wing sweep angle

€,M>w Intrinsic, local, coordinate system

£,M,C Streamline coordinates (Fig. 26)

o Density (non-dimensionalized with respect to Ew)

T p/p effective temperature

® Circumferential angle (Fig. 36)

R Gas constant

SUBSCRIPTS

® Free stream conditions

€ Counter for wing type shocks, £ = 1,2,3,

i Counter for crossflow type shocks, i = 1,2,3,

T Tangent to a surface

HL Quantities on the entropy.layer surface

SL Sea level conditions; all quantities with this sub-

script are non-dimensionalized with respect to their

free-stream values

~rd
X1



NOMENCLATURE (Continued)

SUBSCRIPTS
fr Frozen state
EQ BEquilibrium state

Partial derivatives with respect to independent variables are denoted by subscripts.

SUPERSCRIPTS

A Unit vector

~ Predicted value or intrinsic variable

- Dimensional quantity (except c (8,2) and Ez(Y,Z).
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INTRODUCTION

The prediction of the steady three-dimensional inviscid flow fields about
a vehicle is of great interest to the designer. Most data necessary to develop
a high-speed vehicle is presently obtained from wind tunnel tests which are ex-
pensive, slow and sometimes inadequate. The goal of this work was to create a
computer code to be used in the development of supersonic vehicle configurations.
This code should therefore meet three basic requirements. The first is appli-
cability. In order to obtain the required accuracy for the problem of computing
the flow over a wide variety of geometries, for a wide range of Mach numbers and
angles of attack, the Buler equations must be solved (Fig. 1). Small perturba-
tion techniques yield accurate results only for the flow over slender bodies
flying at low supeisonic Mach numbers and small angles of attack, while
Newtonian theory yields useful results only for large Mach numbers. Neither of
these theories can yield all the details of the flow even in their range of

applicability.

The second requirement is efficiency. The calculation of the flow field
over a complete vehicle should take no longer than two hours on the C.D.C. 6600
computer. This requirement can only be met by reducing the number of mesh
points needed to obtain an accurate sclution and keeping the program logic as
simple as possible. Computational techniques that "capture'" the shocks in the
flow field require too many mesh points to obtain acceptable results (ref. 1).
The three-dimensional method of characteristics is rejected because of its

extreme complexity in program logic.

The last requirement is that the code should be a user-oriented tool. This
is in contrast to codes that are tailor-made for a particular configuration
(ref. 2) and codes that must be constantly monitored "to nurse the solution
through critical regions" (ref. 3). The designer should only have to specify
the vehicle geometry and flight conditlons to obtain reliable results in a
directly usable form (e.g., aerodynamic .coefficients, boundary layer inputs,
etc.). The vehicle geometry should be input via techniques that, on the one
ﬁand, are of the same advanced level as those used in the best incompressible,

supersonic and hypersonic three dimensional tools, and, on the other hand,



poeasess longitudinal and cross sectiocnal continuity needed when solving partial

differential equationsg.

Although the general background of the numerics involved in solving this
problem were available at the beginning of this study, no computer tool for
actually carrying out accurate flow field calculations past realistic con--

figurations existed.

The only limitation inherent in the present formulation of this problem
is that the MachAnumber in the marching direction (an axis running from the
nose of the vehicie to its fail, figure 2) must be supersonic at every point in
the flow field. This limitation implies that, first, the free stream Mach
number must be "sufficiently“ supersonic and, second, that the geometry of the
vehicle is such that there.are no imbedded regions of subsonic flow. The region
around the nose of blunt nose vehicles can be computed'using other existing com-
putational techniques (e.g., ref. 4) and once the flow becone s supersonic the
present technique can be applied. In geneial this limitation means that com-
pressions in the flow field that cause subsonic Mach numbers cannot be handled.
The - general numerical scheme used to solve this problem has been developed by

Moretti (refs. 5-8). "It follows a number of basic guidelines:

e A second order accurate finite difference marching technique (satisfying
the C.F.L. stability condition) is used to numerically integrate the

governing partial differential equations

o All shock waves.in the flow field are followed and the Rankine-Hugoniot

conditions are satisfied across them
e The intersection of two shocks of the same family is computed explicitly
® Conformal mappings are used to develop a computational grid

» The body boundary condition is satisfied by recasting the equations

according to the concept of characteristics

o The edge of the entropy layer on blunt nose vehicles is followed from

its origin and special devices are used to form derivatives across it



o Real gas effects are included (equilibrium air) when appropriate,

by using curve fits of Mollier charts
Sharp leading edge wings are computed using a local two-dimensional

°
solution
It is

A computer code has been developed which uses these basic ideas.
described in detail in Volume II of this report. This code has been used
extensively to compute external flow fields and has been found to yield
accurate results for a wide variety of complex vehicles (Fig. 2) flying at a

wide range of supersonic Mach numbers (M°° ~ 2 - 26) and angles of attack
Computed results are presented in this report to demonstrate

(o ~ * 30°).
and validate this computational procedure.
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Figure 1. - Regions of applicability of inviscid flow theories
(for the surface pressure on a sharp cone).
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Figure 2. - Typical configurations.
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PROBLEM DEFINITION

The problem of computing the external flow about a vehicle flying at
supersonic speeds is completely defined by the vehicle geometry and the free
stream Mach number, flow direction and ratio of specific heats (y) for an ideal
gas (NOTE: throughout this report an ideal gas will be assumed; modifications
of the computational technique for a real gas will be discussed in a later

section).

In order to apply the present computational procedure, the free stream
Mach number must be supersonic. It will be assumed first that the geometry has
a plane of symmetry and second that the free stream velocity vector lies in this
plane of symmetry. These two assumptions are not necessary but the present

techniques have not yet been applied to asymmetric bodies or bodies at yaw.

In order to apply the boundary condition at the vehicle surface (i.e.,
vanishing of the normal velocity) the surface and all its first derivatives
must be defined. Therefore an analytic definition of the geometry is needed,
with continuous first derivatives. The second derivatives of the body geometry
appear explicitly in the present formulation of the problem but continuity is
not necessary. The flow field over geometries with discontinuous slopes, such
as cone-cylinder combinations with sharp expansion corners or geometries with
discontinuous wing-fuselage roots and/or canopy-fuselage connections (Fig. 3)
have been computed with no special treatment. In these cases computational
points on either side of the discontinuity have well defined slopes (the slope
at the corner itself is defined by the limit from one side or the other),
therefore as far &s the computation is concerned there is a smooth transition
from one point to the next. Although major difficulties have not been en-
countered in these cases, best results are obtained for vehicles on which these
discontinuities are eliminated by fairings. Special treatment of other slope.

discontinuities such as sharp leading edge wings will be discussed later.

Since a marching computational technique is employed (i.e., given data on
a plane z = constant, (Fig. 4}, data on a plane z + A z is computed) a geometry
definition that specifies cross sections in the x,y plane (Fig. 5) at each

value of 2z is required.



In order to define the body geometry as a single valued function of two
variables, a polar coordinate system is used with the pole at a point in each
cross section that will specify the body radius as a single valued function of
the polar angle. Of coursé, the pole of this coordinate system is a function of
the axial coordinate. A geometry package that fits all these requirements has

been developed by A. Vachris and L. Yaeger (ref. 9).

The main effort in this study 1s to develop a computational technique that

marches dovnstream from an initial data plane (z = constant, Fig. &) in which
all the dependent variables are known and the component of the velocity in the

z direction (w) is supersonic.

For the flow near the nose of the vehicle there are efficient methods
available so that the initial data can be easily computed. When the nose of
the vehicle is blunt (Fig. ha) the three-dimensional transonic blunt-body solu-
tion developed by Moretti (ref. 4) can be used. If the nose is sharp (Fig.4b)
a region very close to the tip is conical.  Input data from the flow field
solution over sharp conical bodies with attached shocks are readily available
(refs. 10 and 11). However, a method has been described by Moretti and Pandolfi
(ref. 8) for computing sharp conical solutions. With this technique, a blunt
cone solution will asymptote to the sharp cone solution, as the computation
proceeds downstream. S0 that for sharp nose bodies, the calculation is started
with a blunt nose solution and continued downstream until the sharp cone solu-
tion is reached and then the calculation is restarted with this sharp-nose

solution.

FUSELAGE-
CANOPY
CONNECTION

WING-BODY

/EXPANSION CORNER JUNCTION

Figure 3. - Geometries with sharp corners.
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SYMMETRY
PLANE

STARTING (INITIAL DATA) PLANE

X, U, i

BLUNT NOSE VEHICLE

STARTING PLANE

X, Ul SHARP NOSE VEHICLE

Figure 4, - Coordinate system definition.
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COMPUTATIONAL FRAME

The definition of a computational grid is one of the most crucial steps
in the building of a numerical technique. The idea of using conformal mappings
to develop the computational mesh in this problem was originally proposed by

Moretti (ref. 5).

Three coordinate systems or spaces will be referred to: the physical
space (x,y,z), a mapped space (r,0,2), and a computational space (X,Y,Z);
figure 6. The physical coordinate system is Cartesian and defines the three
velocity components that are computed. The governing equations are written
in the physical space and then all derivatives are transformed into the com-

putational space where the mesh points are at uniform interwvals AX, AY, AZ.

Each = constant plane in the mapped space is obtained by conformally
mapping the geometry cross sections in the physical space into near circles,
in the mapped space. So that the region bounded by the body_and the bow shock
becames a ring in the mapped space. The cofresponding computational space is
obtained by normalizing the radial distance between body and shock (X-direction)
and the circumferential distance between the two symmetry planes (Y-direction)
(Fig. 7). The mapped space serves three purposes: first, it distributes the body
mesh points (which are evenly spaced in the computational plane) so that the
necessary resolution is obtained in regions of large curvature where truncation
‘error may otherwise become too large. This is demonstrated in figures 7 and 8
where the mesh points are concentrated near the tips of the wing and the tail
in the physical space. Second, the mapping makes the body and bow shock posi-
tions single valued functions r = b(e,;) and r = Z(e,;) in the mapped plane.

Third, since shock waves imbedded in the flow field become mesh lines, the only
chance of success is that their traces in a mapped space are (for the cross flow
shocks) predominantly along lines 6 = constant and (for the wing-type shocks)
predominantliy aloug lines r = constant. This enables one to define a number of
regions in the ~omputational space when more than one shock exists in a cross
section. The dostted lines in figure 9 are extensions of shocks to complete the

boundaries of Lhese regions. The points on either side of these portions of the

boundaries arc allowed to pass information across the boundary. The require-



ments for such a surface are that they meet the shocks at the edge points
(Fig. 9) and that they do not intersect each other if they are of the same
type. The‘cross flow surfaces (i{e., extensions of crcss flow shoéks) are
defined as 6§ = conétant. The constant taken is thé value of § at the last
point on the shock. Since the wing-type shocks intersect each other, points
on their dividing surfaces are taken at the same percent of the distance be-'
tween its two neighboring boundaries at its edge shock points, so that no
point on the dividihg surface of a‘wing—type shock gets any closer to the two

adjacent boundaries of the shock than its edge shock points.

Now the transformation (r,9,2) - (x,y,z) is considered. A series of
algebraic, invertible, conformal mappings have been developed which transform

a wide variety of cross sections (Fig. 2) into near circles.

Let ¢ = reie, Wy 2‘3 4.5 be intermediate spaces, and G = x + iy (Fig. 10).
¢ = re'® (a)
w.=1¢ - F/c : (b)
. | (1)
W2= Wl + iE ‘ (¢)
W= W, +YB/W§ - (a)
,Wﬁz Wy + 1A | | (e)
2
Ws= W, + D /(l;wu) (f)
G = Wy + ic , (g)

These meppings give x = fl(r,e,;), v fz(r,e,;) while z' = ) completes the

definition of the transformation.

Fach coefficient A,B,C,D,E and F is determined by placing the singularities of
the mappings inside the body so as to obtain a near circle in the (-plane.
Therefore these coefficients are functions of the axial coordinate z. The

coefficients are determined by the geometry. These mappings can handle a wide

variety of vehicles with the coefficients defined as follows:

-10-



A= O* ) (a)

B = i(D3/5k) (b)
, (2)
€=y, A (c)
|2 2
D T‘/xe - (yl-yg) : (d)
E= (Im(W, ) + Im(W,, )) /2 (e)
1 i _
F= (W, - 1B)°/ (£)
5
where Wy wg and W, are the positions of points 1, 4 and 5 (Fig. 10) in
1 Y 5 ‘
the Wé plane. These points are computed by inverting equations (1) as
follows, y5 = ‘/(;rh - y)2 - x32
and
Gl =iy, - (a)
6 = iy, ® 3
G5 = iy5 : : ()
and for K = 1,4 and 5
W_. =G, - iC (a)
5K K
Weo- MW W, +D° =0 (v) (L)
hK 5K MK
W, =W - iA (c)
3k M
3 W
W - W -B=0 ()
°¢ 3k °k

The roots with the largest modulus is used in equations (4b and d).

¥ A =0 for all applications thus far, A % 0 would give the mappings
even greater generality.

-11-



The derivatives Az, Bz’ ete., are obtained in a straight forward manner
by differentiating equations (2-4) and are functions of Xo 3 X35 ¥y 5 Vp s
. z z z z
and ), (Fig. 10).
Z

To obtain r,0 in terms of x,y(at;==z) all of the mappings must be in-
verted. This is a straightforward process that can be carried out using

equations (la) through (1lg) (similar to the procedure used in equations u)).

In order to transform the derivatives in the governing equations from the
physical space to the computational space the first and second derivatives of
all the transformations are needed. The derivatives ros ry, GX, and ey can be

calculated as follows.

.)(w3w2)(w5w4)(ew ) (5)

a ' =1/G
If ¢ = u + iv, where u = rcos0® and v = rsinf, then
u, = Re(gG)

v, = Im(gG)

and from the Cauchy-Riemann conditions

u, =-v
y X
v.=u
NG X
thus
r = (wu, + v, )/r (a)
ry = (wu_ + vvy)/r (p) -
6, = (uvy, - vu, )/ ()
0, = (uvy - vuy)/r (a)

=12~



For the ;—derivatives of the mappings the following results are obtained:’

wl = - ?/g (a)
Woy = wl;) + iE;) (v)
- 2
3p = Vop (o)) * By /i )
W, =W + iA
b T T @
- (8)
Weo = Wg (W5Wu) + D, /2w, (e)
G; = w5; + i02 (£)
%g = Re (G;,) (g)
yo = In (G;)) (h)
- Where A; = AZ, B; = BZ etc., since z==;énd z; = 1. Now since r,0, 2 are

independent coordinates, it follows that r;ﬂ= 92 = 0, therefore

Tha =T X, +7r +r z,=0

2 T Ty 2T 2
and 6, =9 X +9 ¥y +p6 2z =0

2 X 2 V2 "z 2

solving for r, and 6, the following results are obtained

rZ = "(ry y;) + rX X; (a)

(9)

6, = -( 6 ) (b)

B + X
2™ VT
The second derivatives of this transformation needed for the body point

calculation are derived in Appendix A.

-13-



The singularities of these mappings are all inslde the body so that'the
mappings are never evaluated at singular points. It is not necessary that
the mappings be conformal but it has beeh found that conformal mappings give
the best results in terms of mesh point distriﬁution. It is also not necessary

that r, 6, 2 be orthogonal coordinates, in fact in general they are not.

These mappings (equations (1))use simple algebraic expressions and their
coefficients are defined explicitly so that transformation from one space to
another takes a minimum of time. Considerable work has been done to develop
conformal mappings that can map arbitrary cross sections into circles or near
circles (ref. 12). These generalized mappings offer a greater flexibility than
the mappings used herein but would require a large increase in computational

time.

With the mapped plane completely defined, the transformation between the
computational space and the mapped space (X,Y,Z) - (r,e,;) is required. Con-
sider a cross section (Z = 2= constant) with multiple shock waves, e.g.,
(Fig. 9) bow shock, wing shock and tail shock plus two cross flow shocks. The
computational plane is divided into IC regions in the Y direction, and LC
regions in the X direction, they are ordered as in figure 9. The body is
described by r = B(Y,Z) and a wing-type shock as r = Ez(Y,Z) for £ =1 - LC
(£ = LC being the bow shock). Similarly, the cross flow shocks are described
as 6 = H (X,2) for i =1 - IC+1 (i =1 is the bottom symmetry plane and
i=1IC + 1 is the top symmetry plane). These surfaces are shocks for some
range of X and Y and arbitrary (dividing) surfaces for other values of X

and Y as described previously.

Now definé LC + 1 surfaces such that:

B(Y,Z)

I

Cl(Y,Z)

e
—~
<
N
N

Il

JL62) =8 L (1,2)  (p=2,3,...1¢ + 1)

he transformation to the computational plane then can be written as:

-1k~



Z

The coordinates X,Y,Z

plane becomes X =

= (x-C)/(C, ,, - C)) ()
= (o-Hy)/(H, - H,) ®) (o)
= 9 (c)

are not orthogonal. The boundary C£ in the mapped

0 in region £ and C,Q,+l becomes X = 1. Similarly, the IC

regions in the Y-direction in the computational plane are bounded by

Y=0and Y =

1.

Inverting this transformation yields the result:

r

?

Again the derivatives

needed.

First

= X(¢ P z) + Cz ‘ (a)
= Y(H ,-H) + H (b) (11)
=z (c)
of this transformation X Xe XQ,Y Y and Y? are
(C£+l- z) (a)
(c -C, )X +¢C
IR g (b)
(c - ) X+ ¢C (c)
Z£+l £ Zz
( - ) ¥+ (d')
RIS ", (12)
(B - 5) (e)
M) Y (1)
1
0 (g)
0 (h)
1 (i)

-15-



The Jacobian of the transformation is defined as:

Y
L _a(r.e _ X Y "z
‘aéx,’f,zg = | 8% %y 9y
% %

and thus

Yy =1 |3
r J a
Xg =1 | alr.X 2) (c)

J | 3(X,Y,zZ

- (13)

Yo=1 |afr,Y 2) ()

3 1 3(XY,2) |
X, =1 aﬁr,e,XQ— (e)
723

| 3(%,Y,2)

v.=1 |alr,0,7) | (£)
2 7 |3(X,1,z

— —

After some algebraic manipulations the above derivatives can be written

in the following form:

X, = 1./16 + XD 6, + Dl?y:] (a)
4
Y = DX (b) (14)
Ty = 1./ [A * DAy - Dngi] (e)
X, = DyY (a)
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x; - [st + XeyDy + Czﬂ + ch D3] (e)

o +x D, 6y %, D] ()
Y? =Dy * D, X)2 (r)
where
5 = Cm~ Gy (2)
8y = Cygnr - Cy, (b)
87 = Cgpr1 ™ Czy (c)
A= i+l Hi (d)
Av = - H
X HX:'L+l Xl e)
b, = 1 - f (15)
SRS (=)
Dl = - (YAX - HX]'_)/A. (g)
Dy = = (Xoy * Cy /s (h)
Dy = -y + 8,0/ (1)
D), = - <HXi + ¥ay)/ A (3)

This transformation is a modification of the one used previously by
Moretti to solve numerical problems. (e.g. see reference 4) Singularities

occur when C_ = C | or H, = H, and when J = 0. The former occurs when
2 g+ 1 1 i+ 1

two shocks inteisect, this matter will be discussed in the section on
"Treatment of Shocks". The latter case occurs when the mesh lines X = constant
and Y = constant become parallel in the physical plane. This can occur for

certain locations of cross flow shocks. However this problem can be overcome
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by either modifying the conformal mappings so that the cross section in the
mapoed plane is 'more circular' or using a cross flow shock type surface
(which acts like an extension to a cross flow shock) to control the shape of

the mesh lines.

A1l shocks are defined in the mapped plane as r = c¢(6,2) and 8 = h(r,?)
so that C(Y,Z) = ¢ [e(XS,Y,z),;], H(X,Z)=h [r(x,Ys,z),;J (where X, and Y
are either O or 1) and their derivatives éY,@Z,HX and HZ must be calculated.
The body is defined in the physical plane and an iterative procedure is

needed to describe the body as r = b(g,2) from which B(Y,Z) can be computed.
h, and h_the calculation of B, C , B
2 r

From the derivatives b

e) b{QJ Ce) 02, Z’

and 52 proceeds as follows.

Using the notation of equations (11 - 13) define

c, = b(e,;)
c, =c o1 (6,;)
then
sz = Cez [H(XS,Z) 41 " H(XS, z)i]
(16)
HXi = hri fc(y,,2) 41 " C(Ys’z)z]

Where again XS (the value of X at the shock CZ) and Yé (the value of
Y at the shock Hi) are 0 or 1.
C. =c_  +c g (a)
Z 22 ez Z

oy = YIH,(X,2) ;- (X 2), ] + H(X,Z) (b)
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At the points X = XS and Y = YS at a cross section Z these equations

result in a set of simultaneous linear equations for HZ(XS,Z) and CZ(Yg,Z).

r N
c My (h -n )_h +c
b, L8 iy A Qi] 74 (18)
c (Y ,z), = )
27878 1 - ¢, Y (h - h, )"hr |
Op L 5 Tinl i i

where as HZ(XS,Z) can be computed from equations (16). For all other points
equations (16) are used to compute CZ(Y,Z) and HZ(X,Z).

Now the computational plane and its boundaries are completely defined
so that for any mesh point (X,Y,Z) in the computational plane the corresponding

point (x,y,z) in the physical plane and all the necessary transformation de-
rivatives can be computed.
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Figure 6. - Three coordinate systems/spaces used.

~20-



Figure 7. - Body mesh point distribution.
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COMPUTATION OF REGIONS OF CONTINUOUS FLOW

In the physical plane (x,y,z) the Fuler equations are:

WP+ YW, = -(upX + va +ove + Yvy) (a)
wa_ = -(uu_ + vu_ + TP ) (b)
z x y X
- (19)
wv, = -(uvX + v, + TPy) (e)
TP, + W = -(uwX + va) (a)
w§ = —(uSX + v%y) (e)

where T = T/T_, P = 1n(p/p ), S = (é-éw)/cv and all velocities are non-
@® - @
dimensionalized with respect to Dw/pe (the barred quantities are dimen-

sional), x = x/1, ¥y = ¥/%, z = z/% (% is an arbitrary length),

The equation of state for an ideal gas becomes:

In(T) = P (y-1) +8 (20)
Y Y
The dependent variables are P,S and the Cartesian velocity components
u,v,w (Fig. 4). Now transforming all derivatives to the computational plane

the following results are obtained.

£o= BX LY+ £ (a)
(21)
f =7¢ +f.Y + f.7Z (b)
y XXy Yy 7y
£, = fXXZ *ENY +EZ) (e)

where f is the vector (P,u,v,w,S) and
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X, = Xr, +Xe %?;X (a)

X =Xr +X8 +X (p) (2
y ry 0% ;;y (22)
Xz - erz ’ Xeez N %2;2 te)

Similar expressions can be written for the Y and Z derivatives. The deriva-
tives of (X,Y,Z) with respect to (r,6,2) and (r,0,2) with respect to (x,y,z) have

already been discussed in the previous section.

Combining equations (19a) and (19e) the following form of the Fuler equa-

tions is obtained which are used in the present solution.

P, = (allPx+ a12uX+a13VX+ aiﬁwX+b11PY+b12uY+bl3vY+b1th) (a)
uy = (e Pytagsuyt by Byt byouy) (b)
(23)
v, = —(a31PX+a33VX+b31PY+b33VY) (q)
WZ = -(aulpx'f‘augux‘*‘au3VX+auth+bulPY+.b)+2uY+bu3VY+b)+h‘WY) (d)
S, = -(a55sx+b553Y) (e)

where the coefficients appearing in equations (23) are defined in Appendix B.

At a data plane, Z==ZO=:constant, all the guantities on the right side of

equations (23) are known and therefore the derivative f, can be computed and

Z
used to predict the dependent variables at Z = Zo + AZ.

The step size AZ inthe marching direction must satisfy the C.F.L. condi-
tion for stability (ref. 13). If Ay, are the characteristic slopes in the
X,Z plane and KY+ are the characteristic slopes in the Y,Z plane the
stability criteribn is written as follows:

M. = DX/X Aoy, = AY/Ay_
X+ X+ Y+ (2&)

b AX/AX" v Ai/Ay_

ok



Each of these quantities is evaluated for every mesh point at the station

Z = Z,, and AN is taken as 70% of the minimum of all of these AZ values.

A modified MacCormack, two-level, predictor-corrector finite-difference
scheme (ref. 14) is used to integrate equations (23). It can be proven that
the MacCormack scheme is accurate to second order for a linear system of

equations. So that the truncation error is of the form,

2
f
§—§ Az3
ad
where { is a length in the physical plane. In regions where a3f/a£3 is large
the mappings tend to assure AL » O so that the truncation error remains small,

while keeping the total number of grid points to a minimum.
Equations (23) can be written in the following general form
£, = [Alg + [BIf, (25)
where as previously defined f is the vector (P,u,v,w,S) and [A] and [B] are

matrices of the coefficients of equations (23). With these equations the

MacCormack scheme proceeds as follows.

Level one:
fZ(ZO) = [A]fX + [Blfy (al; quantities evaluated at Zo) (a)
T = 1£(2,) + £,(25) 42 (T is the predicted value) (v)
Level two: : _ (26)
?é = [A] E% * [ﬁj}% - (all dependent variables evaluated with (c)
the predicted values and all independent
variables are evaluated at Z =7_ + A7)
£z +82) = (£ + £(2,) + £,02)/2 (d)

The fX derivatives are taken one sided in the positive X-direction in
level one, the fY derivatives in the positive Y-direction. For level two

the direction of these derivatives is reversed.
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This procedure defines all the dependent variables at interior points
of the éomputational plane ( 1<NN<NC(L) and 1<M<MC (1)) figure 11. The bédy
point calculation and the shock point.calculation will be discussed later.
However, note here that-all imbedded shock points have two meéh points
associated with them, one for the low preésure side and one for the high
pressure side, both having the same position in the physical plane (Fig. 11).
The low pressure side of all shocks are computed following the MacCormack:
scheme and taking X and Y derivatives into the low pressure region in both
levels. The low pressure side of the bow shock ((NN = 'NC(L); L = LC)) is.

defined by the given free stream conditions.

- The points on the symmet ry planes (MM = 1, I = 1 and MM = MC(I), I = IC)

are computed using the same scheme and the symmetry conditions PY = Vy = Wy =

SY'= 0 and u = 0. "The boints on the internal boundaries that are not shock
points are also computed us1ng the MacCormack scheme. In level one the points
Ni=1 and MM—l are computed, taklng the dlfference between NN=1, NN=2 and MM=1,
MM=2 for the X and>Y derivatives respectively. After level one quantities at
NC(L) and MC(L) are updated (i.e., f(Nc(L),M)L = £(1,M) and £(N,MC(I)), =

. ‘ L+l I
£(N,1), .). In level two the points on the other side of the surfaces NN =

I+1
NC(L) and MM = MC(I) are computed and afterward the points NN=1 and MM=1 are

updated.

The modifications to MacCormack's integration scheme were originally found
riecessary in the calculation of Blunt nose bodies. For blunt nose bodies
derivﬁtiVes across the "edge" of the entropy layer are not allowed. The entropy
layer calculatlon w1ll be discussed later, for now assume the position of a
surface X = F(Y 7) representing, in the computational plane, the edge of the
entropy layer, (Fig. 12a) and all dependent variables on this surface are known.
Across this surface the derivatives SX’ uX, v, and w, become very large as the

X X
surface approaches the body. In computing these derivatives at the mesh point

N of figure 12b, instead of taking the X derivatives between points N and N + 1

differences are taken between N and the * point which is on the entropy layer
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surface. If the entropy layer surface point becomes very close to the mesh
point (Fig. 12c) the dependent variables at N are set equal to those computed
at the entropy layer surface point since the distance between N and * is too

small to compute S , V., and w, between them.

x* Ux Vx X

In order to calculate the flow field over bodies with blunt nose entropy
layers it was found necessary to use "windward" differencing. Equations (23b,
c, and e) state the variation of u, v and S along a streamline, i.e., the
velocity direction is the characteristic direction of these equations. Accord-

ingly, for the derivatives Vys Uy

in a direction determined by the velocity direction in both levels of the

and SY' If the slope

, u and,SX in these equations, differences are taken

MacCormack scheme (Fig. 13); the same is true for Vys Uy
BX and/pr BY of the velocity vector is small the derivative direction is changed
between level one and two as usual. Since in equations (23b, ¢, and e) inforf
mation is cérried along streamlines, windward differences satisfy the rule of the
domain of influence, so that windward differences are used even when there is no
blunt nose ehtrb?y layer in the computation. The techniques of following the
entropy layer and using windward differences were originally suggested by Moretti
and Pandolfi (refs. 7 and 8). When derivatives are épprOXimated with windward
differencing they are no longer formally second order accurate. But it was

found that windward differencing yields more stable results and the integration

scheme was found to be second order accurate in a numerical experiment.

The calculation of interior points is the most time consuming'part of this
computation mainly because it is done many times. The scheme used here keepS'
the computational time to a minimum by keeping the total number of mesh points

as small as.possible.'
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MM = MC(2)
M =MC(1) + MC(2)
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MM = 1
M=1+MC(1)
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M=1 k> 2 = <
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N=1 N = NC(1) N =1+ NC(1) N = NC{(1) + NC(2)

Figure 11. - Region and mesh point notation.
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Figure 12. - Entropy layer surface (computational space).
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Figure 13. -~ Windward differencing scheme.
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TREATMENT OF SHOCKS

In this section the computation of grid points on the high pressure side
of all shock waves, the detection of imbedded shocks and the intersection of
two same family shocks will be discussed. In this area we draw systematically
from Moretti's extensive research on the treatment of shock waves (ref. 1 and

6).

The bow shock, all wing type shocks (i.e., imbedded shocks which in
general originate near the body and move toward the bow shock, caused by
canopies, wings and vertical tails) and cross flow shocks in the flow field
are computed as discontinuities satisfying the Rankine-Hugoniot conditions.
The bow shock and wing type shocks are defined in the mapped plane by
r = ¢(9,2) and the crossflow shocks by 6 = h(r,2). At a data plane Z all

dependent variables are known, and in addition, the quantities c, 66’ 62,
h, h_, hg are also known. Using equations (16)to (18) c(Y,Z,), Cy,CZ,H(X,ZO),
HX and HZ are computed for all the shocks in the flow field. At ZO + OAZ the

positions of the shock points can be computed by using;

I

C(Y,Z, + pZ) = C(Y,2,) + Cy(Y,Z,) AZ (a)
(27)

H(X,Z, + AZ)

H(X,ZO) + H (X zo) A (b)

Z

Then CY(Y,Zo + AZ) and HX(X,ZO + AZ) are computed using central differences.
With these quantities and equations (16) c, ¢

Z =2, %+ A2

9° h and hr can be computed at

After the first level of the MacCormack scheme the predicted values
of the dependent variables on the low pressure side of all shocks are computed
(the variables on the low pressure side of the bow shock being the constant
free stream values). With the low pressure side of the shocks known the high

pressure side is computed by an iterative process.
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A value of h_ or 62 is guessed, between the values corresponding to an in-
finitely weak shock and&the value which gives a subsonic axial Mach number. Once

this guess 1s made the normal to the shock can be defined. Let

F=r- 5(8,2)
or F=o6- h(rpg)
Then the normal to the shock I is given'by:
- N P " 2 2 2 s - 5 “
= i+ i+ : + + = + + k
I (FX; ) FyJ sz)A/gx Fy FZ Li+ I3 13
where
Fx - Frrx * Feex * Fg?x
F =Fr +PF + F
y = Bty T TSy T Tody
F o= + +
,Fz Frrz Feez F?QZ

With the normal to the shock defined,the Rankine-Hugoniot conditions can be
applied. Using the subscripts 1 for the low pressure side and 2 for the high

pressure side we have:

vnl =V, I (a)
Mhl = vhl//yrl ﬂb)
p2/pl = [Mhl2 (y+t1)/2.3/11 + Mhl2 (y-1)/2.] (c) (28)

B/? = [(y*1)/(y-D)py/oy -1.1/[(y1)/(y-1) - 0/p31 (@)

T,/Ty = [T(R,/P)1/(po/07) ‘ (e)
V=V - Vhl 1 (f)
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—

Where M and Vn are the Mach number and velocity normal to the shock and VT
n
is the velocity tangent to the shock.
An intrinsic coordinate system is defined at the shock with the three

directions (I,J,K), coordinates (e,M,w) and velocities (U,¥,w) such that I

is normal to the shock and:

K= (Ixx)/|Txkl=Ki+KJ~ K k

A':A A: ?+ ¢+ K
Jelxk=u i+a3+ok

In the g,w plane the characteristic that intersects the shock from the high

pressure side has a slope

i§=>\=(ﬁ‘7+a /ﬁ“z+v’72-a2) _ (29)
d — v
(w2 - a°)

Figure 14 shows the shock, characteristic (in the €,y plane) and the point

(¥) in the Z+ data plane where the qharacteristic originates. The characteristic
slope at the shock point is first evaluated and then the position of the (*)

point is computed using the relations:

3
=) b
E¥ = \ w* _ .( ) (30)
o= gy T g (e)
y* = YSH + g*:[g ‘+ (D*Kz (d)

Where the subscript SH refers to quantities at the shock at Z + a2 (Fig. 1k).
Dependent variables at the (*) point are obtained by linear interpolation.
A value of the pressure on the high pressure side of the shock is computed

using the compatibility equation along the characteristic:
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w2 a [wRe w2 a2 (a)

B‘:
V= @ata/ a2 w2 22)/(w2a2) (b)
R=[(T - ) (w”r’Pn+y?7n)-y?r'1Tn) Y?f%’nw (c)
a, 62 +W2 - a2
(31)

dr = 0%/ w¥ - uSH/ Ve (a)
Pgg = PX + Ro* - gdr (e)

. _

SH
P, = € | (f)

Where B,A, and R are averaged between the * point and the shock point.
The iteration is continued until this value of pressure agrees with that

computed from the Rankine-Hugoniot conditions, for some value of ¢, or h,.

# 7

For weak shocks this iteration may converge to a pressure ratio pe/pl <1,

in these cases the value of c, or h, which gives p2/'pl = 1 is taken.

7 ?

Cross flow shock points at the body must satisfy the body boundary condi-
tion, that is the velocity normal to the body on the high pressure side of the
shock.must vanish. This implies that the shock normal, at the body, must be
perpendicular to the body normal. This condition gives a relationship between
E? and h _ at the body: '

h = (FH - h{QFBZ)/Fr : (32)

Where:
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and FBX’ FBy’ FBz are X, y, z derivatives

of Fy = r-b(e,;)

and r = b(9,2) defines the body.

After the second level of the MacCormack scheme the corrected, final
values of the dependent variables on the low pressure side of the imbedded
shocks, the values of-E; and h.2 computed after the first level, and the Rankine-

Hugoniot conditions are used to compute the final values of the dependent

variables on the high pressure side of the shocks.

The first problem encountered when one treats imbedded shocks as dis-
continuities is their detection. There have been a number of techniques pro-
posed (see ref. 6). One of the earliest procedures has been found to be well

suited for the type of shocks encountered in this problem.

Cross flow shocks and wing type shocks are detected in very similar ways.
For cross flow shocks, the pressure distribution is monitored in the Y-
direction and for wing type shocks the pressure distribution is monitored
in the X-direction. At a data plane Z = 2, the maximum pressure gradient
PX for wing type shocks and PY for crossflow shocks is located. Then a third
order polynomial is fit through the four mesh points adjacent to the maximum
gradient (Fig. 15). This polynomial takes the form:

~ 3
X = a, P- o+ al P2 + a2 P+ a3 (33)

Where (X = X for wing type shocks)

I

(x = Y for cross flow shocks)

2

and the ccefficients & , a. and a3 are computed by matching the curve fit

o’ T1°
to the four mesh points (Fig. 15). The condition used to determine the origin

2

of a shock is dx/dP = O which implies dP/dXx — «. Applying this condition to

equation (33) yields an equation for P of the form:

2
Pp = - “l~+/a1 - 3283,

} :

a



When v/ a12 - 3aoa2 = 0. This equation has one real root. When this condition

is satisfied a shock is inserted in the flow field at Xf = aoPg + alPi +

+ a
ay Py

3"
Cross flow shocks are assumed to originate on the body, so that the

pressure distribution is monitored in the Y-direction on X = O (the body).

Once a shock is found on the body monitoring is begun at increasing values

of X = constant.

In general it is not known at what value of Y the first shock point on a

wing type shock will be found so that the maximum pressure gradient P, at all

. X
values of Y must be tested until the first shock point is detected. Once a

wing type shock is detected additional shock points are sought at the grid
points adjacent to the end shock points (Fig. 16).

Finally, consider the intersection of two shocks of the same family. Cross
floﬁ shocks do not move very much (i;e., h,. is small) so that a scheme to handle
the intersection of two crossflow shocks is not needed. Wing type shocks are
detected neaf the body (they are usually caused by compressions on the body)
and they move toward the bow shock, so that they are all of the "same family".
As a shock moves toward the bow shock the region betweeh the imbedded shock and
the body gets larger and the region between the imbedded shock and the bow shock
gets smaller so that mesh points must be moved from the outside region to the
ingide region. When the distance between two shocks becomes a small percent
of the total shock layer (1 to 5%) at some value of Y (Fig. 17) the two shocks
are intersected. A local, exact, two dimensional calculation is used to compute
the intersection of two shocks. The same intrinsic coprdinate system is used as
was discussed in the shock point computation, where i is normal to the outside
shock. In the g,y plane the intersection of two same family shocks is shown
in Fig. 18. The conditions in regions 1 and 4 (Fig. 18) are known. The slope

52 of the resulting shock is assumed and Rankine-Hugoniot conditions (28) and

the conditions in region 1 are used to compute the conditions in region 2. The

pressure in region 3 is set equal to that in region 2 (since the pressure is
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constant across a contact surface) and the total pressure in region 3 equal

to that of region L (since the total pressure is constant through an expansion
fan). With the pressure and the total pressure in region 3 the Mach number
can be computed. Then from the Prandtl-Meyer expansion relation the flow
direction 63 is obtained. The iteration is continued until the velocity

direction §., matches that computed in region 2.

3
Al]l the iterations follow the same procedufe. Assume we have two

functions of a single variable g(n) and G(n). The problem is to find the

i

value of 7 for which g = G. Two values of 7 are assumed and two errors

= - €= _ u’ ) .
(Gl g, Gl) and ( 5 = & G2) are computed. With ¢;,e,,7; @nd T, a linear
variation of ¢ vs 7| is assumed to predict the value of 7 which will force
e - 0. ’

ﬂ3 = nl - €l (ng 'iﬂl)/<€2 - el).

The assumed value is repeatedly updated in this manner until ¢ - O. This

scheme was found simple and fast and in most cases it converges in 4-5

iterations.
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SHARP LEADING EDGE SHOCKS

When a configuration has a sharp leading edge wing (Fig. 19) its wing
leading edge is computed using a local two dimensional solution. The component
of the Mach number normal to the leading edge must be supersonic in order for

this technique to be applied. Also the wing must be sharp from the root.

The mesh point distribution near a sharp tip is shown in figure 20.
The mappings are not modified for this type of configuration but a cross flow
type surface is inserted starting at the wing tip, in order to have a double

point at the tip, on the top and bottom of the wing.

The shock points at the tip (the case of an expansion fan on one side
and a shock on the other can be handled) are automatically inserted when the
wing starts. All other points on this shock are detected as in the case of a
blunt nose wing. The extensions of the shock are treated as discussed previously.
If the flow direction is such that there is a centered expansion fan on the top
or bottom of the wing (Fig. 20), the expansion is computed explicitly at the
tip point, and an arbitrary surface is used from the tip to the symmetry plane.
Thus, the expansion fan 1s computed using the finite difference scheme for all

points except the one at the tip.
The calculation of the tip points utilizes an intrinsic frame of reference

(E,M,w), (T, ¥,#) defined in figure 21. The 7 direction is tangent to the sharp
edge of the wing (hence, also tangent to the shock) so that ¥ remains unchanged
across the shock. In the §,w plane, a local two dimensional wedge calculation
is performed. The conditions on the low pressure side of the shock are known.
A third order algebraic equation (ref. 15) is used td compute B, the shock
angle, and then the Rankine-Hugoniot jump conditions are used to compute the
dependent variables on the high pressure side of the shock. If the flow is
such that there is a centered expansion fan at the tip point the Prandtl-
Meyer expansion fan equations are used to compute the dependent variables on
the body surface. This calculation is done after each level of the McCormack

scheme.
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This method will not handle the situation in which the Mach number normal
to the leading edge of the wing is subsonic or the situation in which the

wing angle (5, Fig. 21) is large enough to force the shock to be detached.
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|
| SHARP LEADING
EDGE WING
Figure 19. - Sharp leading edge wing configuration.

EXPANSION

Figure 21. - Sharp leading edge wing intrinsic frame.
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BODY POINT COMPUTATION

The boundary condition at the vehicle surface is U = O, where U is the
velocity normal to the body. The entropy at the body is computed by using
equation (23e), as for any other mesh point. At the body the coefficient

of 8y (i.e., a55) in equation (23e) vanishes, so that this derivative does

not affect the calculation of entropy on the body.

To compute the pressure on the body the continuity and three momentum
equations (232, b, c, and d) and the body boundary condition are com-
bined to write a compatability equation along the characteristic (in the X,2Z

plane) reaching the wall from the flow field.

Py *a Py ta, uy tajve *a), wy =Ry (a)
Uy * ey Py tay, uy = R, (b)
(34)
VZ + a3lPX a33 VX = R3 (c)
Wyt Py tag, Uyt 3y vy oay) Wy = Ry (a)
where
Ry = -(by Py + Dyjuy + bygvy + byywry)
Ry = - (byyPy + byouy
= - +
R3 (b31PY b33vY)
= - + + +
Ry = = (b Py * Dyouy * byguy + by wry)
Substituting for a ,, a 13 and a,) equation (3ba) becomes
. 2 ., 2 }
Py, + ayq Py T ydx Ty t W Ky Oy T Rl (35)
i, i

Ty



where:
T = u/w and g = v/w

Taking the difference between the product of w with equation (3U4b) and u
with equation (34b) and substituting for a33, au3, )5 and ap), the following

result is obtained.

2 2 2

- + + -

w TZ + PX(wa2l uaul) w (XZ XXTW XyO)TX
Al

(36)
2
+ w_TvT XyOX = WR2 - uRu

A

Similarly, taking the difference between the product of w with equation (3kc)
and v with equation (34d) and substituting for a33, au3, a5 and ay), the

following result is obtained

2 2 2
+ - + + +
w GZ PX (wa3l Vahl) w (XZ Ecw XXT )O‘X

, a (37)
+ w g xT XX'TX = WR3 - VRL]. .

k!

The body boundary condition is W = O. Since X = constant is the body, this

boundary condition can be written as
E=uxx‘+vxy +{«er =0
or
TX, *oX +X =0 ‘ (38)

Combining equations (35), (36), and (37) and using equation (38) the

equation for the characteristic slopes can be written in the form

2
3 2.2
R I /aluT “ o (v, + )+ X Xi] (39)
w we 1 '

w
A_ 1s the slope of the characteristic reaching the wall from the flow field

and the compatibility condition along this characteristic is:

4o



where

[x - VYT
w
Ay
+uPy (X, + X o,) twn (X
A T T
1
R=(a-yr (uX +vX))\R
Aw X y
1
+ XXYK (WR2 - uRh) + X YK
A !

1

(uX, + VK )T (B, + 12y)

X

+ X = R
i« *Hypy) < B

(wR3 - uRu)

The equatioh for the body can be written in the form

F

r

Thus the body boundary condition is

- B(Y,2)

+ + =
TFX cFy FZ 0

This equation holds for all values of Z, thus

o7y T TZx

Now using equation (10a) equation (L41) becomes

F

- (FZZ + oF

Thus, differenting equation (Lk)

[(CL)X

and for X =0

F
X

F
y

[(c

)

1y

r -

- B JX + (c& - B)X_

A4

B=(C
( 1

- By]X + (C
(CL - B)XX
(cL - B)xy

43~

+ =
TFXz) R

4

- B) X

- B)X
) y

(a)

(ko)

(45)

(46)



Using equation (L43) and (46) in equation (40), the following result is

obtained
2 -
R v [R
p = = _ —y A, (X Ty + X g )] -\, P
- X
[x, yI (%, +0X))]
1

This equation is integrated with the same scheme used for interior points with

the X-derivatives computed using three-point end differencing away from the
body.

To compute the velocity components on the body an intrinsic frame
(i,&,K) is used with velocity components (T,¥,%). The vector I is the unit

normal to the body with 3 and ﬁ defined as follows:

T = i 3 X

I=I;1+I,5+ I3k (a)
SR/ fxk]oa fvaieoh (&) (48)
K=IxK=K I+Kj+Kk (c)

where 3, 3 and k are defined in figure 4. The x and y momentum equations are

used to compute V as follows. Equations (3lb) and 3ke) are integrated using

~

the MacCormack scheme to obtain u and v and then v is obtained from the

equation

7=u%_+m% (49)

_From the integrated form of the energy equation the W component of velocity

can be obtained

~ ~2

W= //2Hb -2YT - v (50)
v-1

where T is computed from P and S and the equation of state (19). The three

Cartesian velocity components are

u = ?lJl + G'Kl (a)
v=vJ,+ %'Kg (b) (51)
w o= V’Js + ﬁ'K3 (¢)

Lo



Thus, all the dependent variables (P,u,v,w, and S) on the body are defined.

Modifications of this calculation for real gas and entropy layer

effects will be discussed in later sections of this report.
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BLUNT NOSE ENTROPY TLAYER CALCULATION

On blunt nose bodies, as the computation proceeds downstream, the entropy
gradient normal to the body becomes very large. Stream lines that cross a
weaker bow shock and therefore have low entropies approach the body which is
wetted by the stagnation stream line and therefore has a very large entropy.
The pressure gradients at the body remain small as the edge of this layer
approaches the body but the normal derivatives of S,u,v and w become very
large. This physical phenomenon can create numerical problems for a calcu-
lation which does not handle it properly. A technique proposed by Moretti

and Pandolfi (refs. 7 and 8) is used to account for this phenomenon.

In this section, after defining the "edge" of the entropy layer, the
detection of points on the edge of the entropy layer, the calculation of
the dependent variables at these points and the modification of the body

calculation when the edge becomes close to the body will be discussed.

In figure 22 the entropy distribution (S vsX) in the windward symmetry
planes on two typical geometries at several values of Z (axial stations)
is shown. The *'ed points in figure 22 denote what is called the edge of the
entropy layer. The entropy distributions are similar in other circumferential
planes up to the top symmetry plane. The locus of these ¥ points defines an
"entropy layer surface"” as r = RHL(YQZ) (Fig. 23). This surface originates
at the bow shock and moves toward the body as one proceeds downstream.

This surface is not a coordinate surface, so that in the computatiqgal
plane the * point will be between two mesh points (Fig. 12) at each value
of Y (it should be noted that this surface does not originate at the same

axial station for all circumferential planes).

The key idea of this procedure ié that no derivatives should be taken

across this surface. The method used to insure that the derivatives S v

x x> Vx
and Wy are not taken across this surface when computing the mesh point near

it is discussed in the section on interior point cqmputafions. The questions
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remaining are: how the surface is detected and traced and how the dependent

variables are computed on it.

The surface is detected at it's origin, the bow shock. When the entropy
distribution is similar to the one shown in figure 22a (the entropy has a
minimum) the * points at each value of Y is located at the mesh points adja-
cent to the bow shock when the entropy there is a minimum. The surface at
this Y is initiated with the value of the dependent variables at this mesh
point and is tracked separately from this station on. When the entropy dis-
tribution is similar to the one shown in figure 22b (no minimum exists) the
* point at a value of Y is started when the SX derivative at the mesh point

<0).

adjacent to the shock has a minimum (i.e., Sy

The surface r = RHL(Y,Z) is a stream surface (i.e., a surface containing
the same group of streamlines for all axial stations). This means that the
velocity normal to the surface is zero. When at a station Z, all the dependent
variables on the surface and the position of all the * points are known.
Therefore, (RHL)Y of the surface can be computed using finite differences.

The normal to the surface is

Tg = (r - Ryg) 1+ (r - Ry) 3+ (r - By )k (52)

Since the velocity normal to the surface wvanishes

(r - RHL)xu + (v - RHL)yv + (r - RHL)ZW =0 (53)
From this equation the following result can be obtained

v * (54)
v(er_ + (rY - RHLY) Yy)]/w X+ (rY°RHLY)Yz +r,

The position of the entropy layer surface at Zo + AZ is given by

RHLZ = [u(rXXX + (rY - R )Y.) +

Ry (Y20 + 2Z) = R (1,2,) + RHLZ AT | (55)
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Since the pressure is continuous across the surface the pressure at each
* point can be obtained by interpolation using the two adjacent mesh points.
The entropy and crossflow velocity at each * point are computed using the

following relations

S, = - [SY/ (uYX + va + WYZ)]/W (a)
u, = - [T(PYYX + PXXX) + uY,(uYX +va + wYZ)]/w (p) (56)
Vg = - [T(PYYy + P ny) + vy (u¥ o+ v+ wYZ)]/w (e)

where SY}, uY‘ and vy' are the Y-derivatives on the entropy layer surface.

These three equations are derived by taking a coordinate system (X',Y',Z')

defined by the following transformation

X' = (r - B)/(RHL - B) (a)
Y =Y (b) (57)
7' =7 (c)

The substantial derivative of any quantity £ = (u,v,S) in this coordinate

system is

uf + vf + wf
X v b4

b

i

z + / + 4
X,(uXX vxy WXZ)

+ 7/ + ’ + I (58)
fY, (uY < vY v wY z)
+ 4 + ’ + 7
£, (2/ + 2’ s wz’ )
The coefficient of fX'is zero on the "entropy layer'" surface since the
velocity normal to that gurface is zero, while fY' is the Y-derivative on the

surface and

&%

= £y, (uy + VY, o+ wYZ) + L (59)
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To compute the velocity components an intrinsic coordinate system is

used with unit vectors (f,ﬁ,ﬁ) defined as follows:

i=(XXi+Xy3+XZ£)//Xi+X§+X§ (a)
J=(1x k)/ li X kI (p) (60)
R=1x3 (¢)

The velocity components in the i,&,% directions are called W,V,w. The
streamline slope in the (X,Z) plane is continuous across the entropy
layer surface (just as in the case of a contact surface, where the slope
of the contact surface is the same as that of the streamline adjacent to it
ref. 7 and 8). Therefore (37§3 can be interpolated from the adjacent mesh

points. Moreover, Vv = uJ, + VJ2 where u and v are computed from equations

1
3kb and 3kc. Next, W and U are computed from the following equations
~ ~ 2
w= /2Ho - 2yT/(y-1) - ¥ (61)
(1+(3/4)°)
¥ - (W (62)

Then, from U,V,# and the vectors f,&,K;the velocity components u,v, and w
are computed.

When the entropy layer surface becomes very close to the body (that is
within 1% of the total shock layer thickness, figure 23c and 23d) at some

value of the circumferential coordinate the entropy and the crossflow velocity

(V) on the body are changed to their values on the edge of the entropy layer.
The pressure at the body remains unchanged. On the body there is a Jump in
entropy at the points where the entropy layer surface separates from the

body (Fig. 23c), so that Y-derivatives cannot be taken across these points.
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For grid points that have collapsed Y-derivatives are always taken onto the
entropy layer surface. For the Y-derivative at a grid point that hasn't been
collapsed but is adjacént to a point that has been, a pseudo grid point is
located at the adjacent collapsed p01nt with the blunt nose entropy, and:

velocity direction and pressure of the collapsed point.

Changing the body entropy, from the high stagnation-point value to
the low value at the edge of the entropy layer increases the ax1al Mach
number and therefore increases the step size (AZ) at which the- computatlon
can proceed. In same cases the axial Mach number would become subsonic with
the stagnation entropy and the computation would be unable to proceed. This
significant advantage could not have been gained without following the entropy

layer explicitly.
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Figure 23. - Entropy surface (physical plane)
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REAL GAS EFFECTS (EQUILIBRIUM/FROZEN AIR)

In some flight regimes encountered by hypersonic vehicles the simple
assumption of air being a perfect gas is not acceptable and resl gas effects
must be taken into account. Grossly speaking, real gas effects shift but do
not change the qualitative pattern calculated with perfect gas thermodynamics.
A code for real gas should, therefore, be patterned along the same lines as a

code for peffect gas.

It is in this spirit that the real air problem has been approached.

The salient points of the procedure that has been adopted are:

1. The equations of motion are written using the same dependent
variables as for the perfect gas calculations, namely, the three

velocity components, the logarithm of pressure and entropy.

2. Simple analytical expressions, developed by Moretti (ref. 16), are
used to fit the Mollier diagrams for equilibrium air., The ability
to suddenly "freeze" the fluid with an equivalent ideal gas v

is included.

3. The computational time has not increased out of proportion. The
computational time needed for a perfect gas computation is increased
by a factor of less than 50% when equilibrium real gas effects are

included.

'

4. An accuracy of around 5% is maintained for enthalpies less than
500 x (pgp/Pgr)

5. The parts of the code dealing with gas properties are kept separab:d
from the flow calculations so that if necessary the code may be easily

externded to helium, nitrogen, CFM’ or supersteam.

The equations of motion in nondimensional form are:
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+ + + + + =
wP uP va F(wz u Vy) 0 (a)

z X
+ + + T =

ww o+ ouw va PZ 0 (b)
+ + + T =

wa, Touny vuy Px 0 (e) (63)
+ + + TP = a

wv, +ouv vvy Py 0 (a)

wS +uS +vS_ =0 (e)

7 X v

where T = p/p and T = a2/T. The only difference from perfect gas is in

' and 7. The quantity, 7 is not the temperature except for a perfect gas; it
is 7 = 2T, where T is the temperature and z is the cumpression coefficient.
Similarly, I" is not Y(cpw/cVoo )Jexcept for a perfect gas. For equilibrium

flow both T and I are obtained at every point via the Mollier fits.

The Mollier fits for T and T developed by Moretti (ref. 16) are written

in terms of enthalpy and pressure.

%='+O=a+bﬁ+c/(ﬁ+d) (0 < h'<50, 150 < h < 350) (a)
- \2
T+ po&(hHm) (50 < < 150) b) (64)
TR o e (B/50-10) (350 < b < 500) ()
and _
. B 0 <-h < 50, :
I“=I‘O=(e+gﬁ+ne° )/H, 150 < h < 500 (a)
) _ 2
r= roﬁw«? + feg(h ) (50 < h < 150) (v) (65)
where

h = pSL h/pSL’ P =P - ’m(PSL)
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and

t = 12030.872  -.764759(P + 157.7555)
77.938126-P

L= 12.813 + 0871477 (B + 9.4h23)%
d =250 (2 -1t)/(2t - & - 79.4)

a = (.3176 - v) 4

b = 3176 + (1 + 4/250)(r - 79.4)/250
¢ = -ad

f=-1.83 + 1,098/(6‘-8686(P - 1.72725)

+1,)
g = -.0038 - ,00219476/(P. + 10.3635)

m = -84,6 - .347hLk P (1.- .21745P)

Kk = 9.2217 - .05213171(F + 8.0605)°

= 1.0459 + ,00L424528P

]
1

€ = (12.707 - .hoLse8 B) 1077
M = 1.1828-¢
o = -(.001955 + €)/7

‘The subscript SL refers to sea level conditions as follows (the bar in the
following equations means dimensional quantities):
Psr, = Ps1/Pe
(66)
Pst, = 951/ Pe

The normalized entropy, S, as a function of enthalpy and pressure is given by

s = (y -1) /R (67)

: -



where

= 4,82068 1n (h) + 11.875 + .0245 h +

w|m|

1175./(h + 50) + .43kook B P
and

B = - 2307.- (.0042 B - .092)/[1. + el -O7(H5. - B));

Since T and T must be obtained as functions of entropy and pressure, the
expression given for the entropy is solved for the enthalpy, and
then with the enthalpy and pressure, T and I" are obtained from the

remaining fits.

The interior point computation can be performed by the same procedure

used for perfect gases, except that 1 and I' are computed via the curve fits.

Some changes are necessary in the shock computation. If subsecripts 1
and 2 refer to the low pressure side and high pressure side of the shock
respectively, and if Vn and 5} refer to the velocity components in the
directions of the normal and tangent to the shock respectively then the

Jump conditions are given by

2
Vg o1t 1./(r2 Mh2) (8)
Yo 1+ 1/(m mD)
o = ) (68)
pl/p2 Vn2/vn1 (C)
2
P, /P, = 1+ oMy, (d)
>
1+ My
2 —
Vr% I I = h +Vn2+|v_[\2|2 (e)

= 0 .
*Note: S is the dimensional entropy referenced to 0 Kelvin and 1 atmosphere
of pressure.
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The method of solution follows the same procedure used for a perfect gas.

The shock slope and Vv are guessed and equation (68a) 1is used to solve for
2

F2Mi2 . Equation (68d) is then solved for p, and from equation (68e) h,

is obtained. The ratio pe/pl is then computed from equation (68c).

A second value for pz/pl is obtained from the curve fits of the Mollier
chart using h2 (obtained from Eq. (68e) and Dse An iteration is now per-

formed on Vnzauntil the difference in the two computed values. of pe/pl is
sufficiently esmall. The rest of the calculation is identical to that used

for a perfect gas.

The equilibrium air calculation gtarts at the nose of the vehicle and
continues until a "freezing plane” (i.e., a plane Z = constant), after which
both the chemistry and vibrational relaxation are assumed fixed (this is called
frozen air in what follows). .This freezing station (Zfr) is user input., At
the freezing station ZfT all the dependent variables are related by the Mollier
fits and are in equilibrium. (PEQ’ SEQ’ Upy> VrQ Y TEQ‘and hEQ' The

frozen equations of state are (ref. 17)

(2 (L ' (v)  (69)
Bep = (saw> (r-_1> Ter

= 2\ ~(T-
Spp = (61&)(?_}) gl"{,n Tpp ~(T-1) Po .+ Sppo (o)

with the quantities (R/Rm), ' and SREF defining the properties of the gas
downstream of freezing station. In order to match the equilibrium state

(i.e., P, =P ., S _=85,u_=u

tc.) at each mesh point one must set:
e = Prgr Sper = Smg Y T Vg ©tC) @ P
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RAR., = (oyo/ppe) /Tag

(a)
®/R
T = iEL_“_) (b) (70)
EQ 6%/Rm'TEc,z)
_ Smyora1
Srer = ®R_) v-1 Ma T + (T-1) o (e)

Downstream of this station, these quantities are constant along streamlines
because they are functions only of the concentration of species which are
in turn constant along streamlines, But since the variation G{Ahm), I and

SREF is small at the freezing plane, they are averaged.

Downstream of the freezing station, equations (70) are used instead of

the Mollier-curve fits to relate thermodynamic properties.
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SPECIALIZED OQUTPUT

Calculations have been added to the procedure which use the inviscid
flow field solution to compute desired results in a useable engineering form
or as an input to other calculations. At the user's option, the flow field
data may be used to calculate aerodynamic coefficients, boundary layer input
Quantities, (streamlines, metric coefficients, etc.) and sonic boom data,

Following is a description of the approach used for each of these calcula-
tions.

Aerodynamic Coefficients, Aerodynamic coefficients are calculated, when de-

sired, along with the flow field. Vectored pressures, located at the area
centroid of triangular facets (two such facets between each pair of mesh points
in the previous and current data planes) and directed normal to the facet plane,
are summed at each step over user-specified portions of the vehicle, By mak-
ing use of the body lines (running cross sectional control points) in thé

QUICK geometry package, the coefficients Cr» Cps Cy» Cy» and C, can then be
computed from the appropriate direction components of the integrated forces

and moments for virtually any body components (even multiply disjoint sections

such as the body-alone represented by the solid line in Fig, 24).

The pitching moments are referenced to a user-specified position in the
vehicle symmetry plane, Coefficients are expressed in two fashions - (1) re-
ferenced to the surface area integrated thus far for the given component (this
surface area is included in the output), and (2) referenced to a user input

area. In both cases the reference pressure and density are im and po.

Aerodynamic coefficients and wetted areas are available in terms of the

entire vehicle, its components, and their distributions in z.

Boundary Layer Input Quantities., The boundary layer input quantities are calcu-

lated in two steps. During the flow field computation, integration techniques

are applied to obtain the metric coefficient hl’ defined herein.

Consider Figure 25, in which the fixed body coordinates (x, y, z), the unit

~

, k), and velocity directions (u, v, w) have been indicated.
Also shown is an inviscid streamline on the surface of the body, and the asso-
ciated coordinates (£, M, (), unit vectors (&, T, (), and the velocity direc-

tions (¥, ¥, ¥). The 7~ direction is taken along the streamline, the
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%—direction is perpendicular to the bbdy and n and the E ~ direction is perpendi-

cular to both ﬁ and a.

Associated with these two sets of coordinates, (x, y, z) and (&, 1, ),

we have the three scalar factors (hl, h

» h3), defined by:

2
hl

2 2 2
x_ + + 2
£ Ve

=
[t}

2 2
x, +ty, + 2z
g
Now

or,

The body surface normal (& = i+ Q23 + g3§) is readily available, and

1

]
=3

N
I
jn

~

and since § = ﬁ x g,
Xg = hl(Z,n yg-yn Zg)/h2 h3 = hl (ng_vgs)/q
Ve = Byxy 272 Xc)/h2 hy = by (ug,-wg,)/a

% = by % Ye)/hy By =y (ve -ugy)/a
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In three-dimensions, between any two points P and P', we have:

dP = At + a7 + af
h) 485 + h, anfl + ny acg

i

We get: .
P _ A
- M E
S
3n - e !
aFp _
5 - B3 ¢
and,
3 (3Py_ 3 (2P
51 (560 = 3¢ (5v)
2 3k .2 2P
M (BQ) ag (an)
_a_(a_—f.;)=_5- Q—?)
3 "ar AL JE
thus,

ah3 . Qi ah2 . éﬁ
ERE S e T L T

ah ~ ah .
3¢ +L =tz 38y
e I

Finally, dot multiplying by the appropriate unit vector (é, ﬁ or g) we obtain,
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h ~
é_l = h ol , % (a)
Bl 2 €
3§ 197
oh A
3 om , =
—=2 = h 1.
an " 2ag  © (e)
We make the usual assumption of h3 = 1, which is valid in the absence of
a strong entropy layer. Observing equation (7la), one will note that h. is

2
differentiated with respect to (£) which leads to a multiplier of the hgZ de-

rivative that corresponds to a cross flow velocity which may vanish, thus mak-
ing an axial marching technique inapplicable to the determination of h2. The
other parts of equation (T71) involve (1) derivatives which lead to an axial
velocity type multiplier which is always non-zero and relatively large for

the cases to which this computational procedure is to be applied.

Equation (7la) is then recast, using the appropriate transformations
as discussed in the section on the computational plane, to obtain a differen-

tial equation for h, which is integrated at mesh points on the body during

1
the computation.,

The metric coefficient h, is then stored in an array and treated the same

as any other flow variable, -in exterior calculation then uses this data as
input to trace streamlines on the surface of the vehicle, create the pseudo-
stream surfaces (by taking normals to the body at points along the streamlines
of length 3 x flat plate boundary layer thickness), and interpolate in three
dimensions to obtain all quantities and derivativesvof interest in these

surfaces. Normal derivatives are formed numerically.

The method used for tracing streamlines on the body does not rely on simply
stepping in the velocity direction (thus in most cases off the body) and then

arbitrarily "pulling" the new point to a "corresponding' position on the body.
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Instead, a method was devised to work directly with the angular position (eé)
of the streamline on the body. A differential equation was set up for deé/dz

on the body, and was integrated in a marching fashion.

Consider the vector triad (ﬁ,%,%) as shown in Figure 26. N is the normal
to the body (supplied analytically by our geometry package), B is a body tan-
gent lying entirely in the cross sectional plane, and T is also tangent to the

~

body, and equals B x v,

f=Ni+Nj+Nk
X y z

ﬁ =Bi+B j+ Bk
X v z

T=Ti+T3j+Tk
X vy z.

Since B must lie in the x, y plane, BZ =0, Also,
N+B=0=BJN +BN
X X vy

and since B is a unit vector,

1 =8 +8°
x  y

Accordingly,

BX=-Ny/JNi+N§

B- =N/ \[N2+N2

y X X y
Finally, since T=38x ﬁ,

T =B N

X y 2z

T =B_N

y X 2

|
(]
o
%2
1
=
(ve]
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Now define the velocity directions (U, ¥, %) in the (N, B, T) directions.

Since ¥ = ui + vj + wk

¥=VeN=0=uN +vN +wN
bl y z
¥ =VeB=uB + vB
X
%= V.T =

uT + vT + WT
X N 2z

In the (r; o 2)) and (x; y; z') coordinate systems (Fig. 5, 2' = z),
we define an elemental length (ds) lying in the x] y' (or x, y) plane, such

that, -
V==
3 B
We also note that,
> _dz' °, _dz
vEgT R Tk
Accordingly,
Y_dsdat _ds
w dt 4z dz
ds = ¥/w dz

We can also write

which yields

de' = ds/ \f(dr'/de')2 ¥ p1°

and thus,

dae' (/)
dz \[(dr'/de)e + r'e

Then, using a second order backwards integration, assuming (de4/dz)

linear between computational planes (see Figure 27),

] 1 1 1 -
de S _(de s) . (de s) (de s) z-2
dz dz o dz 1 dz o Azo
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pA
6é=eé +f2<d >dz
2 1 z
we obtain:

a9’ de'
6! = 8" + bz (-——-es)l<Az +E)-<——es> é%j]
So S Az dz o 2 daz /4 2
This method of integration is used to trace any set of streamlines from
specified positions on the body in the initial data plane., The radial posi-

tion of these streamlines is, of course, supplied immediately by the geometry

package for a given eé.

Sonic Boom Data. Sonic boom calculations make use of the same data as the

boundary layer quantity calculation. Another calculation performs a two-
dimensional second order interpolation in given data planes to obtain the
values of flow field variables (p, S, u, v, w) on a data cylinder enclosing
the body, of user-specified radius, whose center line is the z or bodf axis
(FRL).

-6l



SOLID LINE SEGMENTS CONSTITUTE
THE “BODY"” COMPONENT
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TYPICAL QUICK GEOMETRY
CONTROL POINTS

Figure 24. - Example of modular breakup for aerodynamic coefficients.
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Figure 25. - Definition of coordinate system for metric coefficient

calculation.
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Figure 27. - Diagram for streamline marching procedure.
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TYPICAL RESULTS

During the course of this work the flow fields about a large number of
geometries have been studied. Firstly to be sure that the numerical techniques
used worked for all these configurations, second to compare the results
with existing data, and finally to study flow field phenomenon which can't bé
studied through other means. In this section some of the results of these
calculations will be discussed. Most of these results have been presented

previously in references 18 and 19.

In figure 28 the surface streamlines and pressure distribution are shown
for an 80° slab delta wing at 30° angle of attack with M_ = 9.6. At this
high angle of attack the cross flow velocity expands around the wing tip and
becomes supersonic on the lee side, This velocity component must vanish at
the leeward symmetry plane and therefore a cross flaw shock (Fig. l9a) is gen-
erated, The strength of this shock at the body is demonstrated by the stream-
line deflection across it. TFigure 26 shows an axial and circumferential sur-
face pressure distribution compared with experimental data (ref. 18). The
jump in pressure (circumferential distribution) at about 6 = 170° is due to
the cross flow shock. The calculation of this flow from a starting plane
(2/R, ¥ .8) to the end (Z/Ry = 15) took about 15 minutes on the IBM 370/168

computer,

Figures 29, 30, 31 and 32 all describe the flow about an early version
of a shuttle orbiter configuration flying at an angle of 30° for M& = 26.1,
The calculation was performed for an ideal gas, Y = 1,12, Figure 29 shows
the top‘and side views of the shocks and body, while figure 30 shows the
cross sectional views, The shopk pattern in this calculation is quite com-
plex, a strake shock is generated at Z = 380 and intersects the bow shock
at Z = 440, a crossflow shock is generated starting at Z = 550 and a wing
shock starts at Z = 800 and intersects the bow shock at Z = 850, Figure 31
shows the surface pressure variation with surface distance around the vehicle
at several cross sectional stations., Between Z = 800 and Z = 850 there is

a large pressure raise (Fig. 31) due to the beginning of the wing. The large
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peak in pressure at Z = 850 could not be computed without concentrating grid
points in the wing tip region, Near Z = 850 the wing shock intersects the
bow shock and causes an expansion fan which reduces the pressure (at the wing
tip) further downstream. This phenomenon can be observed up to Z = 1050;
while the peak pressure remains unchanged, the expansion moves toward the
windward symmetry plane, The drop in the peak pressure between Z = 1050 and
Z = 1100 is due to the wing tip turning parallel to the flow. Figure 32
shows the radial entropy distribution at three circumferential positions

(X is the normalized radial coordinate). In these figures the thinning of
the entropy layer is shown. This calculation (from Z = 50 to Z = 1280)

took approximately 1.5 hours on the IBM 370/168 using a maximum of 20 x 30

grid points.

Figure 33 shows the surface pressure distribution in the windward sym-
metry plane on the forward portion of the 089-B shuttle orbiter, The calcu-
lati ons were performed using equilibrium air thermodynamics (at 215 thousand
feet altitude) and ideal gases at Y = 1.12 and 1.4. In each case the'ﬁbch
number was 26.1 and the angle of attack was 300. The trends in the v = 1.12
and real gas cases look very similar, while in the y = 1.4 calculation the re-
compression (after the nose expansion) seems weaker. In the real gas calcula-
tion the computer running time was increased by approximately 30 percent. Figure
34 shows the surface streamlines on the 089-B shuttle orbiter. In the figure,
the strength of the cross flow shock is demonstrated by its deflection of the

surface streamlines.

The windward symmetry plane surface pressure distributions on a modified
version of the current 1L0-C space shuttle orbiter are shown in figure 35 for
M_=10.29, vy = 1.4k, and o = 20 and 25°. The vehicle was modified for the
computations by increasing the wing sweep from 45° to 55° (fig. 35) to avoid
subsonic axial Mach numbers near the wing tip which would occur for this
value of y. This modification has little effect on the windward symmetry
plane pressure distributions. The calculated results are compared with ex-
perimental data (unpublished) obtained at NASA/Ames. The agreement is very
good except near the trailing edge. The under prediction near the trailing
edge is due to a mismatch in lower surface slope (of approximately 50) between

the experimental and numerical geometry models.
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The circumferential pressure distribution for this configuration at Z/L =
0.3 is compared with experimental data in figure 36. Again the agreement is
very good. These calculations required approximately one hour of computing

time on the CDC 6600 using a maximum of 15 x 32 grid points.

Another complex shock pattern is shown in figure 37. The vehicle is a
fighter aircraft and the flight conditions are M =2,5and g = 6°, In this
flow field there was a canopy shock, a wing shock and an additional shock due
to a recompression after the canopy. Figure 37 shows a series of cross sec-
tional views in which the intersection of the canopy and bow shocks is evident.
This calculation demonstrated that flow fields containing multiple imbedded

shocks in a cross section can be computed treating all shocks explicitly.

Figure 38 compares the camputed and experimental surface pressures on
this vehicle (M = 2.2,"0 = 5 and 10°), The experiment was run by Grumman
Aerospace Corp. at NASA/Ames and the data are unpublished. This calculation
(from Z = O to Z = 45) took about 1 hour on the IBM 370/165 computer with a

24 x 29 grid in each cross section.

Figure 39 shows the inlet flow field for a supersonic fighter configura-
tion. The axial station shown corresponds to the inlet forward lip station,
so that this is the flow field ingested by the inlet. The maximum differ-
ence between calculation and experiment is less than 3 percent. The experi-
mental data were obtained from reference 31 and the calculation took approxi-
mately 30 minutes on the IBM 370/165 with a 25 x 30 grid.

Figure LO shows surface pressure distributions on the X-15 aircraft top
and bottam symmetry planes. In figure 4Oa the flight Mach number is 6 and
in figure LObthe Mach number is 4, The comparison with the experimental data
is good. The deviation from the experimental results near the vehicle nose
is due to the starting solution which was used (i.e,, a conical flow solution

was used to start the calculation).,

Figure 41 shows a sample of the type of sharp leading edge wing configura-
tion which can be computed. The figure shows the computed shock pattern with

the bow shock intersecting the wing shock.
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Shown in figure 42 is another complex shock pattern, The vehicle is a
hypersonic research aircraft (HSRA) configuration and the flight conditions
are M = 6, Y =1,2, and o = 0°. As shown in the figure the canopy shock is
generated ahead of Z = 36 and is intersecting the bow shock at Z = 60. A
shock wave is generated by the vertical tail ahead of Z = 50. Figure 43
shows a 1lift vs angle of attack curve for the HSRA vehicle. Both the ex-
perimental and Newtonian flow results were supplied by Mr. Lewis Clark of
NASA/LRC. The figure shows that both the Newtonian calculation (with viscous
effects included) and the present one compute lift accurately. The calculaQ
tion of the HSRA flow field (M_= 6 o = 0°) took 1 hour on the IBM 370/168

computer using a 25 x 30 grid.

The metric coefficients of the coordinate system based on the body
streamlines (see figure 4h) are one of the less straightforward by-products of

this computation.

On normals to the body, flow quantities and their normal derivatives are
also automatically computed (Fig. 45) and turn out to be smooth and satis-

factory.
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Figure 28. - Slab delta wing streamlines and surface pressure.
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Figure 29. - 089-B shuttle orbiter shock patterns.
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Figure 30. - 089-B orbiter cross sectional shock patterns.
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Figure 30. - 089-B orbiter cross-sectional shock patterns (contd).
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Figure 31. - 089-B orbiter surface pressure.
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Figure 32. - 089-B orbiter entropy distribution.

=T75=



6
Cp
Moo= 26.1, @ =30°
5 -
0O REAL GAS EQ
(215 K)
O IDEAL GAS
y=112
{ IDEAL GAS
v=1.4
4 , — ' L
100 200 300 z

Figure 33. - 089-B orbiter windward plane surface pressure.
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Figure 34. - 089-B orbiter surface streamlines.
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Figure 36. - Circumferential pressure distribution,
modified 140-c shuttle orbiter.
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‘Figure 37. - Aircraft configuration shock pattern.
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Figure 37. - Aircraft configuration shock pattern (contd).
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Figure 38. - Aircraft configuration, top symmetry plane surface
pressure (M_= 2.2).
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Figure 39. - Flow field at inlet forward lip (M°° =2.2, o= 50).
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Figure 41, - Sharp leading edge wing configuration shock pattern.
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Figure 42. - Hypersonic research aircraft, shock pattern.
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Figure L3. - Hypersonic research aircraft, lift vs angle of attack.
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CONCLUSIONS

A computer tool has been developed for a high-quality computation of
the inviscid flow field about realistic vehicle configurations at

supersonic and hypersonic speeds,

The underlying numeric¢al techniques, while available for simple bodieé,
have been expanded, adapted and integrated into a tool. For high-
quality results, all shocks are treated as shock discontinuities and
entropy layers are handled in a special way. Moreover, a crucial element
of the numerical technique evolved is the use of mappings to simplify
the cross sectional shapes in the computational space and efficiently

distribute a relatively small number of mesh points.
Equilibrium and frozen air are included.

The computer tool automatically produces specialized outputs such as
aerodynamic coefficients, metric factors, normal derivatives in pseudo

stream surfaces and sonic boom data.

The initial results obtained from the computer tool for orbiter and

other configurations are quite satisfactory.

As an orientation, the machine time expenditure for the flow field past
a typical orbiter configuration at M = 26.1, o = 300, and for a perfect
gas is about 1.5 hours on the C.D.C. 6600.
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APPENDIX A

Second Derivatives of Mappings

G, = Wy, w3w2 wSWh
Gep = Mg (w3w2)(w5wh) W (w5wu)(w3w2g)
P (WSWug)(Wswz)
Coe = e/
(if ¢ = ufiv)
u_ = Re (gg)
Ve = I (Cg0)
using the Cauchy-Riemann conditions we can get u . = -u ., u

Now we can differentiate equations (7) to get:

e = (0, *uu
Tor :(uruy + L,
Tye = (ugly * Uy,
Opr = (u, v, + vy,
eyr = (urvy + .
80 = (uevk tuv o
Oe = (2o ¥ U

+ -
TV Vvkr)/r

x
vyt vvyr)/r - ry/r
vV vvye)/r
- vu, - vu )/r2 - 28 /r
rx Xr X
2
- v - vuyr)/r - 29y/r
2
—vd&-w&eVr
2
" Vely T Vuye)/r
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Now:

% ™ Mep U Uy " Uy

L CRRCICEY

JUBCES
W5Wu2

~ _ 2
Cop = = (Ggp = Gpp €aBp)/G

uX; = Re (gG?)

xp T (G
Then we can get r r <] and by taking the derivatives of
equations (7). In order to get rZ; and 922 we take the 2 derivatives of equations
(8) and calculate XQQ and y;; (again A;; = Azz’ B;? f.Bzz’ etc. since z = 2),

and we get from (9)
Tap T T Ty Y T EgTon t T X - Tpy)

Opp = 7 (By T #0090 * 8%y = 8%
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APPENDIX B

Coefficients of Transformed Euler Equations

= g
Il ]

o
]

o PP

oY
|

L
]

=X, +XA +XA
_ r 6

6, * (Gxu + eyv) W/Al
B, * exu/w + eyv/w
(exu + eyv)/Al

6, + (rxu + ryv)w/Al

rZ + re u/w + ryv/w

= (rxu + ryv)/Al

=X +XA_+XA
2 r 5 6 2

= Xxyw/Al

= nyW/Al

-y(XrA7 + XBAu)

Y+ YA + YA
2 ro B2

'YWYX/Al

= 'YWYy / Al

-y(YrA7 + YeAh)
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