5,910 research outputs found
PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs
Summary: The analysis of genetic data often requires a combination of several approaches using different and sometimes incompatible programs. In order to facilitate data exchange and file conversions between population genetics programs, we introduce PGDSpider, a Java program that can read 27 different file formats and export data into 29, partially overlapping, other file formats. The PGDSpider package includes both an intuitive graphical user interface and a command-line version allowing its integration in complex data analysis pipelines. Availability: PGDSpider is freely available under the BSD 3-Clause license on http://cmpg.unibe.ch/software/PGDSpider/ Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin
Variants of the human PPARG locus and the susceptibility to chronic periodontitis
Apart from its regulatory function in lipid and glucose metabolism, peroxisome proliferator-activated receptor (PPAR)γ has impact on the regulation of inflammation and bone metabolism. The aim of the study was to investigate the association of five polymorphisms (rs10865710, rs2067819, rs3892175, rs1801282, rs3856806) within the PPARG gene with chronic periodontitis. The study population comprised 402 periodontitis patients and 793 healthy individuals. Genotyping of the PPARG gene polymorphisms was performed by PCR and melting curve analysis. Comparison of frequency distribution of genotypes between individuals with periodontal disease and healthy controls for the polymorphism rs3856806 showed a P-value of 0.04 but failed to reach significance after correction for multiple testing (P 0.90). A 3-site analysis (rs2067819-rs1801282-rs3856860) revealed five haplotypes with a frequency of ≥1% among cases and controls. Following adjustment for age, gender and smoking, none of the haplotypes was significantly different between periodontitis and healthy controls after Bonferroni correction. This study could not show a significant association between PPARG gene variants and chronic periodontitis
Inference of Evolutionary Forces Acting on Human Biological Pathways.
Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are generally under stronger selective constraints than other genes and that their evolutionary response is correlated. We then introduce a new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald-Kreitman test extended to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show signals of positive, balancing, or purifying selection but also others showing an ancient relaxation of selective constraints. The principle of the 2DNS test can also be applied to other genomic contrasts. For instance, the comparison of patterns of polymorphisms private to African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in non-Africans than in Africans, potentially due to different demographic histories and selective pressures
Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans.
Gene set enrichment approaches have been increasingly successful in finding signals of recent polygenic selection in the human genome. In this study, we aim at detecting biological pathways affected by positive selection in more ancient human evolutionary history. Focusing on four branches of the primate tree that lead to modern humans, we tested all available protein coding gene trees of the Primates clade for signals of adaptation in these branches, using the likelihood-based branch site test of positive selection. The results of these locus-specific tests were then used as input for a gene set enrichment test, where whole pathways are globally scored for a signal of positive selection, instead of focusing only on outlier "significant" genes. We identified signals of positive selection in several pathways that are mainly involved in immune response, sensory perception, metabolism, and energy production. These pathway-level results are highly significant, even though there is no functional enrichment when only focusing on top scoring genes. Interestingly, several gene sets are found significant at multiple levels in the phylogeny, but different genes are responsible for the selection signal in the different branches. This suggests that the same function has been optimized in different ways at different times in primate evolution
The scaling of genetic diversity in a changing and fragmented world
Most species do not live in a constant environment over space or time. Their environment is often heterogeneous with a huge variability in resource availability and exposure to pathogens or predators, which may affect the local densities of the species. Moreover, the habitat might be fragmented, preventing free and isotropic migrations between local sub-populations (demes) of a species, making some demes more isolated than others. For example, during the last ice age populations of many species migrated towards refuge areas from which re-colonization originated when conditions improved. However, populations that could not move fast enough or could not adapt to the new environmental conditions faced extinctions. Populations living in these types of dynamic environments are often referred to as metapopulations and modeled as an array of subdivisions (or demes) that exchange migrants with their neighbors. Several studies have focused on the description of their demography, probability of extinction and expected patterns of diversity at different scales. Importantly, all these evolutionary processes may affect genetic diversity, which can affect the chance of populations to persist. In this chapter we provide an overview on the consequences of fragmentation, long-distance dispersal, range contractions and range shifts on genetic diversity. In addition, we describe new methods to detect and quantify underlying evolutionary processes from sampled genetic data.Laboratoire d’Excellence (LABEX) entitled TULIP: (ANR-10-LABX-41)
Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation
The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts
Genetic diversity of the rain tree (Albizia saman) in Colombian seasonally dry tropical forest for informing conservation and restoration interventions
Albizia saman is a multipurpose tree species of seasonally dry tropical forests (SDTFs) of Mesoamerica and northern South America typically cultivated in silvopastoral and other agroforestry systems around the world, a trend that is bound to increase in light of multimillion hectare commitments for forest and landscape restoration. The effective conservation and sustainable use of A. saman requires detailed knowledge of its genetic diversity across its native distribution range of which surprisingly little is known to date. We assessed the genetic diversity and structure of A.saman across twelve representative locations of SDTF in Colombia, and how they may have been shaped by past climatic changes and human influence. We found four different genetic groups which may be the result of differentiation due to isolation of populations in preglacial times. The current distribution and mixture of genetic groups across STDF fragments we observed might be the result of range expansion of SDTFs during the last glacial period followed by range contraction during the Holocene and human‐influenced movement of germplasm associated with cattle ranching. Despite the fragmented state of the presumed natural A. saman stands we sampled, we did not find any signs of inbreeding, suggesting that gene flow is not jeopardized in humanized landscapes. However, further research is needed to assess potential deleterious effects of fragmentation on progeny. Climate change is not expected to seriously threaten the in situ persistence of A. saman populations and might present opportunities for future range expansion. However, the sourcing of germplasm for tree planting activities needs to be aligned with the genetic affinity of reference populations across the distribution of Colombian SDTFs. We identify priority source populations for in situ conservation based on their high genetic diversity, lack or limited signs of admixture, and/or genetic uniqueness
Confirmation of low genetic diversity and multiple breeding females in a social group of Eurasian badgers from microsatellite and field data
The Eurasian badger (
Meles meles
) is a facultatively social carnivore that shows only rudimentary
co-operative behaviour and a poorly defined social hierarchy. Behavioural evidence
and limited genetic data have suggested that more than one female may breed in a
social group. We combine pregnancy detection by ultrasound and microsatellite locus
scores from a well-studied badger population from Wytham Woods, Oxfordshire, UK, to
demonstrate that multiple females reproduce within a social group. We found that at least
three of seven potential mothers reproduced in a group that contained 11 reproductive age
females and nine offspring. Twelve primers showed variability across the species range and only five of these were variable in Wytham. The microsatellites showed a reduced repeat number, a significantly higher number of nonperfect repeats, and moderate heterozygosity
levels in Wytham. The high frequency of imperfect repeats and demographic phenomena might be responsible for the reduced levels of variability observed in the badger
Wandering behaviour prevents inter and intra oceanic speciation in a coastal pelagic fish
Small pelagic fishes have the ability to disperse over long distances and may present complex evolutionary histories. Here, Old World Anchovies (OWA) were used as a model system to understand genetic patterns and connectivity of fish between the Atlantic and Pacific basins. We surveyed 16 locations worldwide using mtDNA and 8 microsatellite loci for genetic parameters, and mtDNA (cyt b; 16S) and nuclear (RAG1; RAG2) regions for dating major lineage-splitting events within Engraulidae family. The OWA genetic divergences (0-0.4%) are compatible with intra-specific divergence, showing evidence of both ancient and contemporary admixture between the Pacific and Atlantic populations, enhanced by high asymmetrical migration from the Pacific to the Atlantic. The estimated divergence between Atlantic and Pacific anchovies (0.67 [0.53-0.80] Ma) matches a severe drop of sea temperature during the Gunz glacial stage of the Pleistocene. Our results support an alternative evolutionary scenario for the OWA, suggesting a coastal migration along south Asia, Middle East and eastern Africa continental platforms, followed by the colonization of the Atlantic via the Cape of the Good Hope.Portuguese Foundation for Science & Technology (FCT) [SFRH/BD/36600/2007]; FCT [UID/MAR/04292/2013, SFRH/BPD/65830/2009]; FCT strategic plan [UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio
The colonization history of British water vole (Arvicola amphibius (Linnaeus, 1758)): origins and development of the Celtic fringe.
The terminal Pleistocene and Early Holocene, a period from 15 000 to 18 000 Before Present (BP), was critical in establishing the current Holarctic fauna, with temperate-climate species largely replacing cold-adapted ones at mid-latitudes. However, the timing and nature of this process remain unclear for many taxa, a point that impacts on current and future management strategies. Here, we use an ancient DNA dataset to test more directly postglacial histories of the water vole (Arvicola amphibius, formerly A terrestris), a species that is both a conservation priority and a pest in different parts of its range. We specifically examine colonization of Britain, where a complex genetic structure can be observed today. Although we focus on population history at the limits of the species' range, the inclusion of additional European samples allows insights into European postglacial colonization events and provides a molecular perspective on water vole taxonomy
- …
