528 research outputs found

    Of autoregressive continuous time model parameters estimation

    Get PDF
    This article revisits a sequential approach to the estimation of the parameter in a first-order autoregressive model (AR(1)) with continuous time. There is provided a numerical study to get a results of sequential estimations of the parameter in first-order autoregressive model with continuous time and is computed a stopping rule and the optimal time of observations. Also there is provided a comparing analysis of estimation results with using the sequential approach both the optimal time of observations

    Optical Imaging of Tumor Response to Hyperbaric Oxygen Treatment and Irradiation in an Orthotopic Mouse Model of Head and Neck Squamous Cell Carcinoma

    Get PDF
    Purpose: Hyperbaric oxygen therapy (HBOT) is used in the treatment of radiation-induced tissue injury but its effect on (residual) tumor tissue is indistinct and therefore investigated in this study. Procedures: Orthotopic FaDu tumors were established in mice, and the response of the (irradiated) tumors to HBOT was monitored by bioluminescence imaging. Near infrared fluorescence imaging using AngioSense750 and Hypoxisense680 was applied to detect tumor vascular permeability and hypoxia. Results: HBOT treatment resulted in accelerated growth of non-irradiated tumors, but mouse survival was improved. Tumor vascular leakiness and hypoxia were enhanced after HBOT, whereas histological characteristics, epithelial-to-mesenchymal transition markers, and metastatic incidence were not influenced. Conclusions: Squamous cell carcinoma responds to HBOT with respect to tumor growth, vascular permeability, and hypoxia, which may have implications for its use in cancer patients. The ability to longitudinally analyze tumor characteristics highlights the versatility and potential of optical imaging methods in oncological research

    Measuring impairments of functioning and health in patients with axial spondyloarthritis by using the ASAS Health Index and the Environmental Item Set : translation and cross-cultural adaptation into 15 languages

    Get PDF
    Introduction: The Assessments of SpondyloArthritis international society Health Index (ASAS HI) measures functioning and health in patients with spondyloarthritis (SpA) across 17 aspects of health and 9 environmental factors (EF). The objective was to translate and adapt the original English version of the ASAS HI, including the EF Item Set, cross-culturally into 15 languages. Methods: Translation and cross-cultural adaptation has been carried out following the forward-backward procedure. In the cognitive debriefing, 10 patients/country across a broad spectrum of sociodemographic background, were included. Results: The ASAS HI and the EF Item Set were translated into Arabic, Chinese, Croatian, Dutch, French, German, Greek, Hungarian, Italian, Korean, Portuguese, Russian, Spanish, Thai and Turkish. Some difficulties were experienced with translation of the contextual factors indicating that these concepts may be more culturally-dependent. A total of 215 patients with axial SpA across 23 countries (62.3% men, mean (SD) age 42.4 (13.9) years) participated in the field test. Cognitive debriefing showed that items of the ASAS HI and EF Item Set are clear, relevant and comprehensive. All versions were accepted with minor modifications with respect to item wording and response option. The wording of three items had to be adapted to improve clarity. As a result of cognitive debriefing, a new response option 'not applicable' was added to two items of the ASAS HI to improve appropriateness. Discussion: This study showed that the items of the ASAS HI including the EFs were readily adaptable throughout all countries, indicating that the concepts covered were comprehensive, clear and meaningful in different cultures

    Towards reliable quantification of cell state velocities

    Get PDF
    A few years ago, it was proposed to use the simultaneous quantification of unspliced and spliced messenger RNA (mRNA) to add a temporal dimension to high-throughput snapshots of single cell RNA sequencing data. This concept can yield additional insight into the transcriptional dynamics of the biological systems under study. However, current methods for inferring cell state velocities from such data (known as RNA velocities) are afflicted by several theoretical and computational problems, hindering realistic and reliable velocity estimation. We discuss these issues and propose new solutions for addressing some of the current challenges in consistency of data processing, velocity inference and visualisation. We translate our computational conclusion in two velocity analysis tools: one detailed method κ-velo and one heuristic method eco-velo, each of which uses a different set of assumptions about the data

    A Distinct Pool of Nav1.5 Channels at the Lateral Membrane of Murine Ventricular Cardiomyocytes.

    Get PDF
    Background: In cardiac ventricular muscle cells, the presence of voltage-gated sodium channels Na <sub>v</sub> 1.5 at the lateral membrane depends in part on the interaction between the dystrophin-syntrophin complex and the Na <sub>v</sub> 1.5 C-terminal PDZ-domain-binding sequence Ser-Ile-Val (SIV motif). α1-Syntrophin, a PDZ-domain adaptor protein, mediates the interaction between Na <sub>v</sub> 1.5 and dystrophin at the lateral membrane of cardiac cells. Using the cell-attached patch-clamp approach on cardiomyocytes expressing Na <sub>v</sub> 1.5 in which the SIV motif is deleted (ΔSIV), sodium current (I <sub>Na</sub> ) recordings from the lateral membrane revealed a SIV-motif-independent I <sub>Na</sub> . Since immunostaining has suggested that Na <sub>v</sub> 1.5 is expressed in transverse (T-) tubules, this remaining I <sub>Na</sub> might be carried by channels in the T-tubules. Of note, a recent study using heterologous expression systems showed that α1-syntrophin also interacts with the Na <sub>v</sub> 1.5 N-terminus, which may explain the SIV-motif independent I <sub>Na</sub> at the lateral membrane of cardiomyocytes. Aim: To address the role of α1-syntrophin in regulating the I <sub>Na</sub> at the lateral membrane of cardiac cells. Methods and Results: Patch-clamp experiments in cell-attached configuration were performed on the lateral membranes of wild-type, α1-syntrophin knockdown, and ΔSIV ventricular mouse cardiomyocytes. Compared to wild-type, a reduction of the lateral I <sub>Na</sub> was observed in myocytes from α1-syntrophin knockdown hearts. Similar to ΔSIV myocytes, a remaining I <sub>Na</sub> was still recorded. In addition, cell-attached I <sub>Na</sub> recordings from lateral membrane did not differ significantly between non-detubulated and detubulated ΔSIV cardiomyocytes. Lastly, we obtained evidence suggesting that cell-attached patch-clamp experiments on the lateral membrane cannot record currents carried by channels in T-tubules such as calcium channels. Conclusion: Altogether, these results suggest the presence of a sub-pool of sodium channels at the lateral membrane of cardiomyocytes that is independent of α1-syntrophin and the PDZ-binding motif of Na <sub>v</sub> 1.5, located in membrane domains outside of T-tubules. The question of a T-tubular pool of Na <sub>v</sub> 1.5 channels, however, remains open

    In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells

    Get PDF
    We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically

    Model-Based Selection for Proton Therapy in Breast Cancer:Development of the National Indication Protocol for Proton Therapy and First Clinical Experiences

    Get PDF
    Aims: Proton therapy is a radiation technique that yields less dose in normal tissues than photon therapy. In the Netherlands, proton therapy is reimbursed if the reduced dose to normal tissues is predicted to translate into a prespecified reduction in toxicity, based on nationally approved validated models. The aim of this paper is to present the development of a national indication protocol for proton therapy (NIPP) for model-based selection of breast cancer patients and to report on first clinical experiences. Materials and methods: A national proton therapy working group for breast cancer (PWG-BC) screened the literature for prognostic models able to estimate the individual risk of specific radiation-induced side-effects. After critical appraisal and selection of suitable models, a NIPP for breast cancer was written and subjected to comments by all stakeholders. The approved NIPP was subsequently introduced to select breast cancer patients who would benefit most from proton therapy. Results: The model of Darby et al. (N Engl J Med 2013; 368:987–82) was the only model fulfilling the criteria prespecified by the PWG-BC. The model estimates the relative risk of an acute coronary event (ACE) based on the mean heart dose. The absolute lifetime risk of ACE <80 years was calculated by applying this model to the Dutch absolute incidence of ACE for female and male patients, between 40 and 70 years at breast cancer radiotherapy, with/without cardiovascular risk factors. The NIPP was approved for reimbursement in January 2019. Based on a threshold value of a 2% absolute lower risk on ACE for proton therapy compared with photons, 268 breast cancer patients have been treated in the Netherlands with proton therapy between February 2019 and January 2021. Conclusion: The NIPP includes a model that allows the estimation of the absolute risk on ACE <80 years based on mean heart dose. In the first 2 years, 268 breast cancer patients have been treated with proton therapy in The Netherlands

    Identification of DNA methylation changes at cis-regulatory elements during early steps of HSC differentiation using tagmentation-based whole genome bisulfite sequencing

    No full text
    Epigenetic alterations during cellular differentiation are a key molecular mechanism which both instructs and reinforces the process of lineage commitment. Within the haematopoietic system, progressive changes in the DNA methylome of haematopoietic stem cells (HSCs) are essential for the effective production of mature blood cells. Inhibition or loss of function of the cellular DNA methylation machinery has been shown to lead to a severe perturbation in blood production and is also an important driver of malignant transformation. HSCs constitute a very rare cell population in the bone marrow, capable of life-long self-renewal and multi-lineage differentiation. The low abundance of HSCs has been a major technological barrier to the global analysis of the CpG methylation status within both HSCs and their immediate progeny, the multipotent progenitors (MPPs). Within this Extra View article, we review the current understanding of how the DNA methylome regulates normal and malignant hematopoiesis. We also discuss the current methodologies that are available for interrogating the DNA methylation status of HSCs and MPPs and describe a new data set that was generated using tagmentation-based whole genome bisulfite sequencing (TWGBS) in order to comprehensively map methylated cytosines using the limited amount of genomic DNA that can be harvested from rare cell populations. Extended analysis of this data set clearly demonstrates the added value of genome-wide sequencing of methylated cytosines and identifies novel important cis-acting regulatory regions that are dynamically remodeled during the first steps of haematopoietic differentiation

    Evaluation of a fourth-generation latex agglutination test for the identification of Staphylococcus aureus

    Get PDF
     In this study, we evaluated a fourth-generation agglutination assay (Staph Plus; DiaMondiaL[DML]) for the rapid identification of Staphylococcus aureus. First, comparison with three third-generation assays (Slidex Staph Plus, bioMérieux; Staphaurex Plus, Murex Diagnostics; Pastorex Staph-Plus, Sanofi Diagnostics Pasteur) was performed on a predefined strain collection: 265 coagulase-negative staphylococci (CNS), 266 methicillin-resistant S. aureus (MRSA) and 262 methicillin-susceptible S. aureus (MSSA) strains (“strain study”). Second, patient material-derived strains (883 CNS, 847 MSSA and 135 MRSA) were tested concurrently with both the DML and Slidex assays (“daily practice study”). In the strain study, the overall sensitivity and specificity of the DML, Slidex, Staphaurex and Pastorex assays were 99.2% and 100%, 98.1% and 100%, 95.2% and 100%, and 98.2% and 98.8%, respectively. Using the respective tests, the result was indeterminate in 0.0%, 0.6%, 0.4% and 1.5% of the strains. Overall, the sensitivity of the DML and Slidex assays were comparable in both sub-studies. However, in MRSA strains, the sensitivity of the DML assay was significantly lower than the Slidex assay. The specificity of the Slidex assay was significantly higher than the DML assay. However, the percentage of indeterminate results was much higher for the Slidex than the DML assay. In conclusion, the presumptive identification of S. aureus by the DML assay proved to be equal to third-generation latex agglutination assays

    Absence of cardiovascular manifestations in a haploinsufficient Tgfbr1 mouse model

    Get PDF
    Loeys-Dietz syndrome (LDS) is an autosomal dominant arterial aneurysm disease belonging to the spectrum of transforming growth factor β (TGFβ)-associated vasculopathies. In its most typical form it is characterized by the presence of hypertelorism, bifid uvula/cleft palate and aortic aneurysm and/or arterial tortuosity. LDS is caused by heterozygous loss of function mutations in the genes encoding TGFβ receptor 1 and 2 (TGFBR1 and -2), which lead to a paradoxical increase in TGFβ signaling. To address this apparent paradox and to gain more insight into the pathophysiology of aneurysmal disease, we characterized a new Tgfbr1 mouse model carrying a p.Y378*nonsense mutation. Study of the natural history in this model showed that homozygous mutant mice die during embryonic development due to defective vascularization. Heterozygous mutant mice aged 6 and 12 months were morphologically and (immuno)histochemically indistinguishable from wild-type mice. We show that the mutant allele is degraded by nonsense mediated mRNA decay, expected to result in haploinsufficiency of the mutant allele. Since this haploinsufficiency model does not result in cardiovascular malformations, it does not allow further study of the process of aneurysm formation. In addition to providing a comprehensive method for cardiovascular phenotyping in mice, the results of this study confirm that haploinsuffciency is not the underlying genetic mechanism in human LDS
    corecore