63 research outputs found
A 64k pixel CMOS-DEPFET module for the soft X-rays DSSC imager operating at MHz-frame rates
: The 64k pixel DEPFET module is the key sensitive component of the DEPFET Sensor with Signal Compression (DSSC), a large area 2D hybrid detector for capturing and measuring soft X-rays at the European XFEL. The final 1-megapixel camera has to detect photons with energies between [Formula: see text] and [Formula: see text], and must provide a peak frame rate of [Formula: see text] to cope with the unique bunch structure of the European XFEL. This work summarizes the functionalities and properties of the first modules assembled with full-format CMOS-DEPFET arrays, featuring [Formula: see text] hexagonally-shaped pixels with a side length of 136 μm. The pixel sensors utilize the DEPFET technology to realize an extremely low input capacitance for excellent energy resolution and, at the same time, an intrinsic capability of signal compression without any gain switching. Each pixel of the readout ASIC includes a DEPFET-bias current cancellation circuitry, a trapezoidal-shaping filter, a 9-bit ADC and a 800-word long digital memory. The trimming, calibration and final characterization were performed in a laboratory test-bench at DESY. All detector features are assessed at [Formula: see text]. An outstanding equivalent noise charge of [Formula: see text]e-rms is achieved at 1.1-MHz frame rate and gain of 26.8 Analog-to-Digital Unit per keV ([Formula: see text]). At [Formula: see text] and [Formula: see text], a noise of [Formula: see text] e-rms and a dynamic range of [Formula: see text] are obtained. The highest dynamic range of [Formula: see text] is reached at [Formula: see text] and [Formula: see text]. These values can fulfill the specification of the DSSC project
Clinical trial of ABCB5+ mesenchymal stem cells for recessive dystrophic epidermolysis bullosa
BACKGROUND. Recessive dystrophic epidermolysis bullosa (RDEB) is a rare, devastating, and lifethreatening inherited skin fragility disorder that comes about due to a lack of functional type VII collagen, for which no effective therapy exists. ABCB5+ dermal mesenchymal stem cells (ABCB5+ MSCs) possess immunomodulatory, inflammation-dampening, and tissue-healing capacities. In a Col7a1-/-mouse model of RDEB, treatment with ABCB5+ MSCs markedly extended the animals\u27 lifespans. METHODS. In this international, multicentric, single-arm, phase I/IIa clinical trial, 16 patients (aged 4-36 years) enrolled into 4 age cohorts received 3 i.v. infusions of 2 × 106ABCB5+ MSCs/kg on days 0, 17, and 35. Patients were followed up for 12 weeks regarding efficacy and 12 months regarding safety. RESULTS. At 12 weeks, statistically significant median (IQR) reductions in the Epidermolysis Bullosa Disease Activity and Scarring Index activity (EBDASI activity) score of 13.0% (2.9%-30%; P = 0.049) and the Instrument for Scoring Clinical Outcome of Research for Epidermolysis Bullosa clinician (iscorEB-c) score of 18.2% (1.9%-39.8%; P = 0.037) were observed. Reductions in itch and pain numerical rating scale scores were greatest on day 35, amounting to 37.5% (0.0%-42.9%; P = 0.033) and 25.0% (-8.4% to 46.4%; P = 0.168), respectively. Three adverse events were considered related to the cell product: 1 mild lymphadenopathy and 2 hypersensitivity reactions. The latter 2 were serious but resolved without sequelae shortly after withdrawal of treatment.
CONCLUSION. This trial demonstrates good tolerability, manageable safety, and potential efficacy of i.v. ABCB5+ MSCs as a readily available disease-modifying therapy for RDEB and provides a rationale for further clinical evaluation
Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL
Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy & Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot-by-shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, the DSSC imaging detector, which is capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst, is employed and allows approaching the photon shot-noise limit. We review the setup and its capabilities, as well as the online and offline analysis tools provided to users
Micronucleus frequency in children exposed to biomass burning in the Brazilian Legal Amazon region: a control case study
<p>Abstract</p> <p>Background</p> <p>The Amazon represents an area of 61% of Brazilian territory and is undergoing major changes resulting from disorderly economic development, especially the advance of agribusiness. Composition of the atmosphere is controlled by several natural and anthropogenic processes, and emission from biomass burning is one with the major impact on human health. The aim of this study was to evaluate genotoxic potential of air pollutants generated by biomass burning through micronucleus assay in exfoliated buccal cells of schoolchildren in the Brazilian Amazon region.</p> <p>Methods</p> <p>The study was conducted during the dry seasons in two regions of the Brazilian Amazon. The assay was carried out on buccal epithelial cells of 574 schoolchildren between 6-16 years old.</p> <p>Results</p> <p>The results show a significant difference between micronucleus frequencies in children exposed to biomass burning compared to those in a control area.</p> <p>Conclusions</p> <p>The present study demonstrated that in situ biomonitoring using a sensitive and low cost assay (buccal micronucleus assay) may be an important tool for monitoring air quality in remote regions. It is difficult to attribute the increase in micronuclei frequency observed in our study to any specific toxic element integrated in the particulate matters. However, the contribution of the present study lies in the evidence that increased exposure to fine particulate matter generates an increased micronuclei frequency in oral epithelial cells of schoolchildren.</p
The interplay of local electron correlations and ultrafast spin dynamics in fcc Ni
The complex electronic structure of metallic ferromagnets is determined by a balance between exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion. The interplay between the respective terms of the Hamiltonian is of fundamental interest, since it produces most, if not all, of the exotic phenomena observed in the solid state. By combining high energy and temporal resolution in femtosecond time-resolved X-ray absorption spectroscopy with ab initio time-dependent density functional theory we analyze the electronic structure in fcc Ni on the time scale of these interactions in a pump-probe experiment. We distinguish transient broadening and energy shifts in the absorption spectra, which we demonstrate to be caused by electron repopulation and correlation-induced modifications of the electronic structure, respectively. Importantly, the theoretical description of this experimental result hence requires to take the local Coulomb interaction into account, revealing a temporal interplay between band formation, exchange interaction, and Coulomb repulsion
Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL
The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range
Observation of fluctuation-mediated picosecond nucleation of a topological phase
peer reviewedTopological states of matter exhibit fascinating physics combined with an intrinsic stability. A key challenge is the fast creation of topological phases, which requires massive reorientation of charge or spin degrees of freedom. Here we report the picosecond emergence of an extended topological phase that comprises many magnetic skyrmions. The nucleation of this phase, followed in real time via single-shot soft X-ray scattering after infrared laser excitation, is mediated by a transient topological fluctuation state. This state is enabled by the presence of a time-reversal symmetry-breaking perpendicular magnetic field and exists for less than 300 ps. Atomistic simulations indicate that the fluctuation state largely reduces the topological energy barrier and thereby enables the observed rapid and homogeneous nucleation of the skyrmion phase. These observations provide fundamental insights into the nature of topological phase transitions, and suggest a path towards ultrafast topological switching in a wide variety of materials through intermediate fluctuating states. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.Leibniz Association Grant no. K162/2018 (OptiSPIN
Assessment of the mutagenic potential of Skadar Lake sediments using the salmonella microsomal assay
- …