133 research outputs found

    The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    Get PDF
    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden "lung" inserts with embedded Perspex "lesions" were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours

    Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment.

    Get PDF
    RNA interference (RNAi) related pathways are essential for germline development and fertility in metazoa and can contribute to inter- and trans-generational inheritance. In the nematode Caenorhabditis elegans, environmental double-stranded RNA provided by feeding can lead to heritable changes in phenotype and gene expression. Notably, transmission efficiency differs between the male and female germline, yet the underlying mechanisms remain elusive. Here we use high-throughput sequencing of dissected gonads to quantify sex-specific endogenous piRNAs, miRNAs and siRNAs in the C. elegans germline and the somatic gonad. We identify genes with exceptionally high levels of secondary 22G RNAs that are associated with low mRNA expression, a signature compatible with silencing. We further demonstrate that contrary to the hermaphrodite germline, the male germline, but not male soma, is resistant to environmental RNAi triggers provided by feeding, in line with previous work. This sex-difference in silencing efficacy is associated with lower levels of gonadal RNAi amplification products. Moreover, this tissue- and sex-specific RNAi resistance is regulated by the germline, since mutant males with a feminized germline are RNAi sensitive. This study provides important sex- and tissue-specific expression data of miRNA, piRNA and siRNA as well as mechanistic insights into sex-differences of gene regulation in response to environmental cues

    Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices

    Get PDF
    One of the most important area of research in microfluidic technologies focuses on the identification and characterisation of novel materials with enhanced properties and versatility. Here we present a fast, easy and inexpensive microstructuration method for the fabrication of novel, flexible, transparent and biocompatible microfluidic devices. Using a simple hot-press, we demonstrate the rapid (30s) production of various microfluidic prototypes embossed in a commercially-available soft thermoplastic elastomer (sTPE). This styrenic block copolymer (BCP) material is as flexible as PDMS and as thermoformable as classical thermoplastics. It exhibits high fidelity in replication using SU–8 and epoxy master molds in a highly convenient low-isobar (0.4 bar) and iso-thermal process. Microfluidic devices can then be easily sealed using either a simple hot plate or even room-temperature assembly, allowing them so sustain liquid pressure of 2 and 0.6 bars respectively. The excellent sorption and biocompatibility properties of the microchips were validated via a standard rhodamine dye assay as well as a sensitive yeast cell-based assay. The morphology and composition of the surface area after plasma treatment for hydrophilization purposes are stable and show constant and homogenous distribution of the block nanodomains (∼ 22° after 4 days). These domains, which are evenly distributed at the nanoscale, therefore account for a uniform and convenient surface at a “microfluidic scale device”. To our knowledge, this is the first thermoplastic elastomer material that can be used for fast and reliable fabrication and assembly of microdevices while maintaining a high and stable hydrophilicity

    Neurons are MHC Class I-Dependent Targets for CD8 T Cells upon Neurotropic Viral Infection

    Get PDF
    Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I) molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV), in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and uncover the unusual modalities of CTL-induced neuronal damage

    CRMP5 Regulates Generation and Survival of Newborn Neurons in Olfactory and Hippocampal Neurogenic Areas of the Adult Mouse Brain

    Get PDF
    The Collapsin Response Mediator Proteins (CRMPs) are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB) and the dentate gyrus (DG). During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5−/− mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity

    Development and validation of a questionnaire assessing volitional competencies to enhance the performance of physical activities in chronic low back pain patients

    Get PDF
    BACKGROUND: Motivation has long been emphasized as the most important determinant of action. However, there is a substantial gap between people's goals and their attainment. Patients may be motivated and yet unable to take action if their volitional competencies are insufficient. One of the important tasks of volition is goal-maintenance. Research has stressed the importance of a volitional tool, the implementation intentions. Implementation intentions indicate where, when, and how the action leading to the goal will be performed. Forming implementation intentions favours the execution of goal-directed efforts, and reinforces the relationship between intentions and behaviours. Results from various studies clearly suggest that volitional competencies and implementation intentions could play a role in low back pain (LBP) patients. However, there is at present no questionnaire allowing assessing the capacity of implementation intentions of physical activities in LBP patients. METHODS/DESIGN: This study will develop such a questionnaire, using a 3-step approach. A first qualitative step to build categories and generate items; 30 patients suffering chronic LBP will be invited to participate in semi-structured interviews; verbatim and derived items will then be submitted to a panel of experts, using a Delphi method; a second quantitative step to examine the properties of items, and determine the factorial structure of the questionnaire; 100 patients suffering chronic LBP will be recruited to respond to this phase; and third, preliminary psychometric analyses (item-scale correlations, construct validity, reliability); 180 chronic LBP patients will be recruited for this phase of the study. The relationships between implementation intentions and variables affecting physical activity on chronic LBP patients, i.e. pain, physical capacities, fear-avoidance beliefs, kinesiophobia, work status, and level of physical activity will be considered. DISCUSSION: Developing a questionnaire to assess implementation intentions would allow investigating the role of these intentions in the transition from acute to chronic LBP. The results of this study should contribute to the understanding of the psychological processes at stake in the development of chronic LBP, and in particular to the identification of factors eventually favouring patients' participation in and adherence to active physical treatments

    Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is characterized by severe motor symptoms, and currently there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD; however, its effect in PD motor symptoms has never been addressed. In the present work, an extensive behavior analysis was performed to better characterize the MPTP model of PD and to evaluate the effects of TUDCA in the prevention/improvement of mice phenotype. MPTP induced significant alterations in general motor performance paradigms, including increased latency in the motor swimming, adhesive removal and pole tests, as well as altered gait, foot dragging, and tremors. TUDCA administration, either before or after MPTP, significantly reduced the swimming latency, improved gait quality, and decreased foot dragging. Importantly, TUDCA was also effective in the prevention of typical parkinsonian symptoms such as spontaneous activity, ability to initiate movement and tremors. Accordingly, TUDCA prevented MPTP-induced decrease of dopaminergic fibers and ATP levels, mitochondrial dysfunction and neuroinflammation. Overall, MPTP-injected mice presented motor symptoms that are aggravated throughout time, resembling human parkinsonism, whereas PD motor symptoms were absent or mild in TUDCA-treated animals, and no aggravation was observed in any parameter. The thorough demonstration of improvement of PD symptoms together with the demonstration of the pathways triggered by TUDCA supports a subsequent clinical trial in humans and future validation of the application of this bile acid in PD.National funds, through the Foundation for Science and Technology (Portugal) (FCT), under the scope of the projects PTDC/NEU-NMC/0248/2012, UID/DTP/04138/2013 and POCI-01-0145-FEDER-007038, and post-doctoral grants SFRH/BPD72891/2010 (to A.I.R.), SFRH/BPD/95855/2013 (to M.J.N.), SFRH/BPD/98023/2013 (to A.N.C.), SFRH/BPD/91562/2012 (to A.S.F.) and UMINHO/BI/248/2016 (to S.D.S.). This work has also been developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER), and by FEDER funds, through the Competitiveness Factors Operational Program (COMPETE)info:eu-repo/semantics/publishedVersio

    International Lower Limb Collaborative (INTELLECT) study: a multicentre, international retrospective audit of lower extremity open fractures

    Get PDF

    International lower limb collaborative (INTELLECT) study: a multicentre, international retrospective audit of lower extremity open fractures

    Get PDF
    Trauma remains a major cause of mortality and disability across the world1, with a higher burden in developing nations2. Open lower extremity injuries are devastating events from a physical3, mental health4, and socioeconomic5 standpoint. The potential sequelae, including risk of chronic infection and amputation, can lead to delayed recovery and major disability6. This international study aimed to describe global disparities, timely intervention, guideline-directed care, and economic aspects of open lower limb injuries
    corecore