1,085 research outputs found

    Banking union in historical perspective: the initiative of the European Commission in the 1960s-1970s

    Get PDF
    This article shows that planning for the organization of EU banking regulation and supervision did not just appear on the agenda in recent years with discussions over the creation of the eurozone banking union. It unveils a hitherto neglected initiative of the European Commission in the 1960s and early 1970s. Drawing on extensive archival work, this article explains that this initiative, however, rested on a number of different assumptions, and emerged in a much different context. It first explains that the Commission's initial project was not crisis-driven; that it articulated the link between monetary integration and banking regulation; and finally that it did not set out to move the supervisory framework to the supranational level, unlike present-day developments

    Recombinant Incretin-Secreting Microbe Improves Metabolic Dysfunction in High-Fat Diet Fed Rodents

    Get PDF
    peer-reviewedThe gut hormone glucagon-like peptide (GLP)-1 and its analogues represent a new generation of anti-diabetic drugs, which have also demonstrated propensity to modulate host lipid metabolism. Despite this, drugs of this nature are currently limited to intramuscular administration routes due to intestinal degradation. The aim of this study was to design a recombinant microbial delivery vector for a GLP-1 analogue and assess the efficacy of the therapeutic in improving host glucose, lipid and cholesterol metabolism in diet induced obese rodents. Diet-induced obese animals received either Lactobacillus paracasei NFBC 338 transformed to express a long-acting analogue of GLP-1 or the isogenic control microbe which solely harbored the pNZ44 plasmid. Short-term GLP-1 microbe intervention in rats reduced serum low-density lipoprotein cholesterol, triglycerides and triglyceride-rich lipoprotein cholesterol substantially. Conversely, extended GLP-1 microbe intervention improved glucose-dependent insulin secretion, glucose metabolism and cholesterol metabolism, compared to the high-fat control group. Interestingly, the microbe significantly attenuated the adiposity associated with the model and altered the serum lipidome, independently of GLP-1 secretion. These data indicate that recombinant incretin-secreting microbes may offer a novel and safe means of managing cholesterol metabolism and diet induced dyslipidaemia, as well as insulin sensitivity in metabolic dysfunction

    Effects of climate change and anthropogenic modification on a disturbance-dependent species in a large riverine system

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 8 (2017): e01653, doi:10.1002/ecs2.1653.Humans have altered nearly every natural disturbance regime on the planet through climate and land-use change, and in many instances, these processes may have interacting effects. For example, projected shifts in temperature and precipitation will likely influence disturbance regimes already affected by anthropogenic fire suppression or river impoundments. Understanding how disturbance-dependent species respond to complex and interacting environmental changes is important for conservation efforts. Using field-based demographic and movement rates, we conducted a metapopulation viability analysis for piping plovers (Charadrius melodus), a threatened disturbance-dependent species, along the Missouri and Platte rivers in the Great Plains of North America. Our aim was to better understand current and projected future metapopulation dynamics given that natural disturbances (flooding or high-flow events) have been greatly reduced by river impoundments and that climate change could further alter the disturbance regime. Although metapopulation abundance has been substantially reduced under the current suppressed disturbance regime (high-flow return interval ~ 20 yr), it could grow if the frequency of high-flow events increases as predicted under likely climate change scenarios. We found that a four-year return interval would maximize metapopulation abundance, and all subpopulations in the metapopulation would act as sources at a return interval of 15 yr or less. Regardless of disturbance frequency, the presence of even a small, stable source subpopulation buffered the metapopulation and sustained a low metapopulation extinction risk. Therefore, climate change could have positive effects in ecosystems where disturbances have been anthropogenically suppressed when climatic shifts move disturbance regimes toward more historical patterns. Furthermore, stable source populations, even if unintentionally maintained through anthropogenic activities, may be critical for the persistence of metapopulations of early-successional species under both suppressed disturbance regimes and disturbance regimes where climate change has further altered disturbance frequency or scope.Nebraska Environmental Trust Nebraska State Wildlife Grant Program; Nebraska Wildlife Conservation Fund; U.S. Army Corps of Engineers; U.S. Fish and Wildlife Service (USFWS); USFWS North Atlantic Landscape Conservation Cooperative; Virginia Tec

    Effects of climate change and anthropogenic modification on a disturbance-dependent species in a large riverine system

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 8 (2017): e01653, doi:10.1002/ecs2.1653.Humans have altered nearly every natural disturbance regime on the planet through climate and land-use change, and in many instances, these processes may have interacting effects. For example, projected shifts in temperature and precipitation will likely influence disturbance regimes already affected by anthropogenic fire suppression or river impoundments. Understanding how disturbance-dependent species respond to complex and interacting environmental changes is important for conservation efforts. Using field-based demographic and movement rates, we conducted a metapopulation viability analysis for piping plovers (Charadrius melodus), a threatened disturbance-dependent species, along the Missouri and Platte rivers in the Great Plains of North America. Our aim was to better understand current and projected future metapopulation dynamics given that natural disturbances (flooding or high-flow events) have been greatly reduced by river impoundments and that climate change could further alter the disturbance regime. Although metapopulation abundance has been substantially reduced under the current suppressed disturbance regime (high-flow return interval ~ 20 yr), it could grow if the frequency of high-flow events increases as predicted under likely climate change scenarios. We found that a four-year return interval would maximize metapopulation abundance, and all subpopulations in the metapopulation would act as sources at a return interval of 15 yr or less. Regardless of disturbance frequency, the presence of even a small, stable source subpopulation buffered the metapopulation and sustained a low metapopulation extinction risk. Therefore, climate change could have positive effects in ecosystems where disturbances have been anthropogenically suppressed when climatic shifts move disturbance regimes toward more historical patterns. Furthermore, stable source populations, even if unintentionally maintained through anthropogenic activities, may be critical for the persistence of metapopulations of early-successional species under both suppressed disturbance regimes and disturbance regimes where climate change has further altered disturbance frequency or scope.Nebraska Environmental Trust Nebraska State Wildlife Grant Program; Nebraska Wildlife Conservation Fund; U.S. Army Corps of Engineers; U.S. Fish and Wildlife Service (USFWS); USFWS North Atlantic Landscape Conservation Cooperative; Virginia Tec

    Drunk bugs: chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice

    Get PDF
    The gut microbiota includes a community of bacteria that play an integral part in host health and biological processes. Pronounced and repeated findings have linked gut microbiome to stress, anxiety, and depression. Currently, however, there remains only a limited set of studies focusing on microbiota change in substance abuse, including alcohol use disorder. To date, no studies have investigated the impact of vapour alcohol administration on the gut microbiome. For research on gut microbiota and addiction to proceed, an understanding of how route of drug administration affects gut microbiota must first be established. Animal models of alcohol abuse have proven valuable for elucidating the biological processes involved in addiction and alcohol-related diseases. This is the first study to investigate the effect of vapour route of ethanol administration on gut microbiota in mice. Adult male C57BL/6J mice were exposed to 4 weeks of chronic intermittent vapourized ethanol (CIE, N = 10) or air (Control, N = 9). Faecal samples were collected at the end of exposure followed by 16S sequencing and bioinformatic analysis. Robust separation between CIE and Control was seen in the microbiome, as assessed by alpha (p < 0.05) and beta (p < 0.001) diversity, with a notable decrease in alpha diversity in CIE. These results demonstrate that CIE exposure markedly alters the gut microbiota in mice. Significant increases in genus Alistipes (p < 0.001) and significant reductions in genra Clostridium IV and XIVb (p < 0.001), Dorea (p < 0.01), and Coprococcus (p < 0.01) were seen between CIE mice and Control. These findings support the viability of the CIE method for studies investigating the microbiota-gut-brain axis and align with previous research showing similar microbiota alterations in inflammatory states during alcoholic hepatitis and psychological stress

    Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice

    Get PDF
    Background: The realization that the microbiota-gut-brain axis plays a critical role in health and disease, including neuropsychiatric disorders, is rapidly advancing. Nurturing a beneficial gut microbiome with prebiotics, such as fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), is an appealing but underinvestigated microbiota manipulation. Here we tested whether chronic prebiotic treatment modifies behavior across domains relevant to anxiety, depression, cognition, stress response, and social behavior. Methods: C57BL/6J male mice were administered FOS, GOS, or a combination of FOS+GOS for 3 weeks prior to testing. Plasma corticosterone, microbiota composition, and cecal short-chain fatty acids were measured. In addition, FOS+GOS- or water-treated mice were also exposed to chronic psychosocial stress, and behavior, immune, and microbiota parameters were assessed. Results: Chronic prebiotic FOS+GOS treatment exhibited both antidepressant and anxiolytic effects. Moreover, the administration of GOS and the FOS+GOS combination reduced stress-induced corticosterone release. Prebiotics modified specific gene expression in the hippocampus and hypothalamus. Regarding short-chain fatty acid concentrations, prebiotic administration increased cecal acetate and propionate and reduced isobutyrate concentrations, changes that correlated significantly with the positive effects seen on behavior. Moreover, FOS+GOS reduced chronic stress-induced elevations in corticosterone and proinflammatory cytokine levels and depression-like and anxiety-like behavior in addition to normalizing the effects of stress on the microbiota. Conclusions: Taken together, these data strongly suggest a beneficial role of prebiotic treatment for stress-related behaviors. These findings strengthen the evidence base supporting therapeutic targeting of the gut microbiota for brain-gut axis disorders, opening new avenues in the field of nutritional neuropsychopharmacology

    Revisiting Metchnikoff: Age-related alterations in microbiota-gut-brain axis in the mouse

    Get PDF
    Over the last decade, there has been increased interest in the role of the gut microbiome in health including brain health. This is by no means a new theory; Elie Metchnikoff proposed over a century ago that targeting the gut by consuming lactic acid bacteria such as those in yogurt, could improve or delay the onset of cognitive decline associated with ageing. However, there is limited information characterising the relationship between the behavioural and physiological sequelae of ageing and alterations in the gut microbiome. To this end, we assessed the behavioural, physiological and caecal microbiota profile of aged male mice. Older mice (20–21 months old) exhibited deficits in spatial memory and increases in anxiety-like behaviours compared to younger mice (2–3 months old). They also exhibited increased gut permeability, which was directly correlated with elevations in peripheral pro-inflammatory cytokines. Furthermore, stress exacerbated the gut permeability of aged mice. Examination of the caecal microbiota revealed significant increases in phylum TM7, family Porphyromonadaceae and genus Odoribacter of aged mice. This represents a shift of aged microbiota towards a profile previously associated with inflammatory disease, particularly gastrointestinal and liver disorders. Furthermore, Porphyromonadaceae, which has also been associated with cognitive decline and affective disorders, was directly correlated with anxiety-like behaviour in aged mice. These changes suggest that changes in the gut microbiota and associated increases in gut permeability and peripheral inflammation may be important mediators of the impairments in behavioural, affective and cognitive functions seen in ageing

    Gender Differences in Motivation to Resolve Eating and Body Image Concerns in College Students

    Get PDF
    The objective of this study was to identify similarities and differences between college women and men with respect to their eating and body image concerns, weight fluctuation and level of motivation to resolve these concerns. 101 University of Dayton students participated in this study. Students completed an eating and body concern survey online. Body image concerns were significantly greater for females compared to males (p=0.007) and significantly greater as motivation level to resolve the concerns increased (p=0.019). Eating concerns followed the same trends but did not reach statistical significance. Weight fluctuation in both genders increased significantly as motivation level increased (p=0.047). Important eating and body image concerns exist in college students with higher levels of concern being paired with higher levels of motivation to resolve them. Body image concerns are significantly different between genders whereas eating concerns are not

    Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms?

    Get PDF
    Irritable bowel syndrome (IBS) is a functional disorder of the gastrointestinal (GI) tract characterized by pain or discomfort from the lower abdominal region, which is associated with altered bowel habit. Despite its prevalence, there is currently a lack of effective treatment options for patients. IBS has long been considered as a neurological condition resulting from alterations in the brain gut axis, but immunological alterations are increasingly reported in IBS patients, consistent with the hypothesis that there is a chronic, but low-grade, immune activation. Mediators released by immune cells act to either dampen or amplify the activity of GI nerves. Release of a number of these mediators correlates with symptoms of IBS, highlighting the importance of interactions between the immune and the nervous systems. Investigation of the role of microbiota in these interactions is in its early stages, but may provide many answers regarding the mechanisms underlying activation of the immune system in IBS. Identifying what the key changes in the GI immune system are in IBS and how these changes modulate viscerosensory nervous function is essential for the development of novel therapies for the underlying disorder.Patrick A. Hughes, Heddy Zola, Irmeli A. Penttila, L. Ashley Blackshaw, Jane M. Andrews, and Doreen Krumbiege
    corecore