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Abstract. Humans have altered nearly every natural disturbance regime on the planet through climate
and land-use change, and in many instances, these processes may have interacting effects. For example,
projected shifts in temperature and precipitation will likely influence disturbance regimes already affected
by anthropogenic fire suppression or river impoundments. Understanding how disturbance-dependent
species respond to complex and interacting environmental changes is important for conservation efforts.
Using field-based demographic and movement rates, we conducted a metapopulation viability analysis for
piping plovers (Charadrius melodus), a threatened disturbance-dependent species, along the Missouri and
Platte rivers in the Great Plains of North America. Our aim was to better understand current and projected
future metapopulation dynamics given that natural disturbances (flooding or high-flow events) have been
greatly reduced by river impoundments and that climate change could further alter the disturbance
regime. Although metapopulation abundance has been substantially reduced under the current sup-
pressed disturbance regime (high-flow return interval ~ 20 yr), it could grow if the frequency of high-flow
events increases as predicted under likely climate change scenarios. We found that a four-year return inter-
val would maximize metapopulation abundance, and all subpopulations in the metapopulation would act
as sources at a return interval of 15 yr or less. Regardless of disturbance frequency, the presence of even a
small, stable source subpopulation buffered the metapopulation and sustained a low metapopulation
extinction risk. Therefore, climate change could have positive effects in ecosystems where disturbances
have been anthropogenically suppressed when climatic shifts move disturbance regimes toward more his-
torical patterns. Furthermore, stable source populations, even if unintentionally maintained through
anthropogenic activities, may be critical for the persistence of metapopulations of early-successional spe-
cies under both suppressed disturbance regimes and disturbance regimes where climate change has further
altered disturbance frequency or scope.
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INTRODUCTION

Resource management has historically followed
a command and control approach in an effort to
optimize economic gains and minimize unpre-
dictable outcomes or events, such as insect out-
breaks, fires, and floods (Holling and Meffe 1996).
The result is most often “the pathology of natural
resource management”where natural disturbances
are suppressed, natural variation is reduced, and
ecosystems become vulnerable to undesirable
change (Holling and Meffe 1996, Seidl et al. 2016).

These types of ecosystem modifications have
made disturbance-dependent organisms espe-
cially vulnerable to extinction (e.g., Brawn et al.
2001, Lawler et al. 2002), particularly species that
evolved in landscapes with historically frequent
disturbances (Martin and Fahrig 2016). Species in
naturally disturbed ecosystems are adapted to a
specific disturbance regime, which encompasses
the frequency, timing, duration, and intensity of
disturbances (Lytle and Poff 2004, Keely et al.
2011). Species adapted to historical disturbance
regimes, whether related to fire, flooding, storms,
or other natural disturbances, are often nega-
tively affected by alterations to those regimes
(Kelly et al. 2014, Ranius et al. 2014, McElderry
et al. 2015, Paniw et al. 2015). Regime changes
can accelerate shifts in species composition, alter
biome boundaries, and lead to state changes and
“no analogue” communities (Turner 2010).

In addition, interactions among multiple
drivers are particularly common in disturbance-
dependent ecosystems, where climate change-
related shifts in precipitation and temperature
are expected to affect extreme disturbance events
(Intergovernmental Panel on Climate Change
(IPCC) 2013) in ecosystems where natural distur-
bance regimes have already been suppressed.
For instance, climatic shifts have resulted in
higher wildfire frequencies, durations, and sea-
sons in the western United States, where man-
aged fire suppression has been the trend for
decades (Westerling et al. 2006). Similarly,
increased drought frequencies are expected to
further stress ecosystems in impounded rivers
worldwide (Palmer et al. 2008). Such interactions
between land-use and a changing climate can
cause major alterations to landscapes and the
biological communities they support (Paine et al.
1998, Cochrane and Laurance 2008, Regos et al.

2015). Furthermore, stressed ecosystems are
often less resilient to climate change impacts
(Staudt et al. 2013). Therefore, understanding the
complex interactions among climate, disturbance
regime, habitat change, and associated biological
assemblages will be critical for formulating effec-
tive climate change adaptation and restoration
strategies.
We explored how a changing disturbance

regime, related to both land-use management and
climate change, could affect the extinction risk of a
disturbance-dependent species on impounded,
large floodplain rivers. Large floodplain rivers are
among the most endangered ecosystems in the
world, largely due to a loss of natural flow regimes
and disturbances (Poff et al. 1997, Tockner and
Stanford 2002, Peipoch et al. 2015). Flood pulses
once universal in these ecosystems promoted the
movement of organisms, nutrients, and soils while
creating nutrient-rich mosaics of different succes-
sional habitats that supported diverse plant and
animal assemblages (Junk et al. 1989, Poff et al.
1997, Amoros and Bornette 2002). Today, the
majority of large floodplain rivers worldwide have
been dammed, diverted, channelized, and/or
pumped, which has dramatically altered flooding
regimes, promoted terrestrialization, and reduced
species richness throughout the ecosystem (Poff
et al. 1997, Peipoch et al. 2015). Rivers and their
ecosystems will likely be disproportionately
affected by climate change; anthropogenic modifi-
cations have reduced their natural abilities to
adjust to and absorb extended droughts or
extreme precipitation events (Palmer et al. 2008).
We used 6 yr of observations of three piping

plover (Charadrius melodus) populations on the
Missouri and Platte rivers in the central United
States (Fig. 1) to conduct a metapopulation viabil-
ity analysis (PVA). During the study period, a
large regional flood occurred for the first time in
13 yr and influenced movement, reproduction,
and survival rates of the target species in one sub-
population (Catlin et al. 2015). This allowed us to
measure vital rates as a function of time-since-
disturbance and to model scenarios that assumed
hypothetical changes (i.e., due to climate change)
to the current, suppressed disturbance regime.
These scenarios offer a “broad exploration of
novel futures” (Seidl et al. 2016), and results have
important implications for understanding popula-
tion and metapopulation trends in dynamic
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systems where historical drivers of landscape
change have been altered.

MATERIALS AND METHODS

Study system
Piping plovers are imperiled, migratory shore-

birds with discrete breeding populations on the
Atlantic Coast, the Great Lakes, and the North-
ern Great Plains of Canada and the United
States. The metapopulation considered in this
study, which supports approximately 14% of the

Northern Great Plains piping plover population
(Elliot-Smith et al. 2009), was composed of three
subpopulations on the lower Platte River (PLT)
and the Missouri River at Lewis and Clark Lake
(LCL) and Gavins Point Reach (GVP; Fig. 1).
Preferred nesting habitat for the species is open

or sparsely vegetated expanses of flat, dry por-
tions of sandbars and beaches in areas adjacent to
water (Elliot-Smith and Haig 2004). Annual spring
bankfull flows and higher-magnitude floods
(hereafter, collectively referred to as “high flows”
or “high-flow events”) historically created or

Fig. 1. The Missouri–Platte River piping plover (Charadrius melodus) metapopulation. The Lewis and Clark
Lake (LCL) and Gavins Point Reach (GVP) subpopulations, separated by the Gavins Point Dam, are located on
the Missouri River, while the Platte River subpopulation (PLT) is located on the Platte River.
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maintained open, early-successional habitat used
by this and other species (Hesse and Mestle 1993,
U.S. Fish and Wildlife Service 2009). Prior to 1952,
when control of the Missouri River began with the
construction of three main-stem dams, high-flow
events with peak releases over 110,000 ft3/s and
160,000 ft3/s occurred in 15 and 4, respectively, of
the 24 yr on record at the Omaha, Nebraska River
gage (Hesse and Mestle 1993). However, the
frequency of these processes was reduced as the
Missouri and Platte rivers and their tributaries
were channelized, dammed, and diverted (Laus-
trup and LeValley 1998, National Research Coun-
cil 2005). For example, no peak releases over
160,000 ft3/s and only two events over 110,000 ft3/s
were recorded at the Omaha gage in the 33 yr
following main-stem dam closures in 1954 (Hesse
and Mestle 1993). Today, high-flow events (e.g.,
peak discharge rates ≥ 100,000 ft3/s; monthly out-
flows > 3 million acre-feet) occur approximately
once every 20 years in the Missouri River portion
of our study area (discharge rates from Gavins
Point Dam available at http://www.nwd-mr.usace.
army.mil/rcc/projdata/gapt.pdf). This reduction in
high flows, and the habitat created by these
events, has led to substantial declines in popula-
tions of piping plovers and over 80 additional spe-
cies from a variety of taxa (National Research
Council 2002, U.S. Fish and Wildlife Service 2009).

Under the current disturbance regime, open nat-
ural sandbars rarely occur upstream of the Loup
River confluence in the Platte River (Elliot-Smith
et al. 2009, Bomberger Brown et al. 2010), and
most piping plovers in the PLT subpopulation
now nest off-river on sites that include sand and
gravel mines and lakeshore housing developments
located on the river’s floodplain (Bomberger
Brown et al. 2010; Fig. 1). The GVP subpopulation
lies within one of the last free-flowing portions of
the Missouri River, and piping plovers within this
subpopulation use both natural and engineered
(i.e., mechanically maintained by the U.S. Army
Corps of Engineers through dredging and vegeta-
tion management; Catlin et al. 2011) sand and
gravel bars (Fig. 1). The LCL subpopulation is
located in the reservoir impounded by the Gavins
Point Dam on the Missouri River, and birds within
this subpopulation primarily used engineered
sandbars during our study (Catlin et al. 2016).

In June 2010 through 2011, historically high
water releases from the Gavins Point Dam (peak

releases > 160,000 ft3/s; U.S. Army Corps of Engi-
neers 2012) occurred following high levels of win-
ter snow and spring rain. This flood submerged
all active nests and chicks within GVP, eliminating
reproductive output for this population in both
years. The two high-flow years created an abun-
dance of nesting habitat downstream from the
dam for the 2012 and 2013 breeding seasons. LCL
and PLTwere largely unaffected by water fluctua-
tions in 2010 and 2011, and birds within these
subpopulations continued to rely on human-
maintained habitats for nesting during our study
period (Catlin et al. 2016). As a result of periodic
high-flow events and successional processes, the
carrying capacity of habitat used by GVP birds
fluctuated widely during the study period on
which our demographic model was based. In con-
trast and for reference, the amount of habitat
available for individuals in LCL and PLT
remained relatively constant during our study
period, and these subpopulations were generally
at or near carrying capacity (Catlin et al. 2015; D.
H. Catlin, unpublished data, M. Bomberger Brown,
unpublished data).
Disturbance regimes in the watershed may be

further impacted by climate change. Climate mod-
els considering several emissions scenarios sug-
gest that precipitation levels will likely increase in
the coming decades throughout the Missouri
River watershed (Kunkel et al. 2013). These mod-
els also suggest an increase in the frequency of
extreme, heavy precipitation events (Kunkel et al.
2013). How changes in precipitation will influence
the hydrology of the Missouri River and its tribu-
taries is less clear, as uncertainty in macro-scale
hydrologic modeling can be high (Hagemann
et al. 2013). Depending on the general circulation
model (GCM) considered, some models predict
slight decreases, while others predict slight to sig-
nificant increases in water yield in the future
(Thomson et al. 2005). A U.S. Bureau of Reclama-
tion study, which integrated over 112 GCM pro-
jections, predicted that flows will increase by
10–20% in the western portion of the watershed
and by >20% in the eastern portion (Alexander
et al. 2011). However, to our knowledge, no pro-
jections exist for future high-flow return intervals
for the Missouri River. In addition, historical
observations and future projections indicate high
variability and low spatial autocorrelation among
sub-basins (U.S. Army Corps of Engineers 2016).

 ❖ www.esajournals.org 4 January 2017 ❖ Volume 8(1) ❖ Article e01653

ZEIGLER ET AL.

http://www.nwd-mr.usace.army.mil/rcc/projdata/gapt.pdf
http://www.nwd-mr.usace.army.mil/rcc/projdata/gapt.pdf


Baseline metapopulation model
Population viability analysis models used in

this study were constructed in Vortex (ver10.0.7.3;
Lacy et al. 2015). A previously published baseline
PVA model for this metapopulation was based on
extensive demographic and movement observa-
tions from 2008 to 2013 (Catlin et al. 2016). We
used this baseline model as the foundation for all
model scenarios simulated in this study, and field
data and parameters that underlie this model can
be found in Catlin et al. (2016).

In the baseline model, movement and demo-
graphic rates were specific to each subpopulation,
and many of these rates were dependent on the
time since a high-flow event last occurred. High-
flow events occurred stochastically in the baseline
model with a frequency of 5% (i.e., one event
approximately every 20 years). Demographic
rates and habitat carrying capacities for PLT and
LCL in the baseline model were not dependent on
the occurrence of high-flow events, because obser-
vations showed high flows did not have much, if
any, direct impact on these subpopulations. How-
ever, immigration rates into these subpopulations
from GVP and emigration rates from these sub-
populations into GVP were dependent on high-
flow events in the model. Habitat within GVP
was directly impacted by high flows, and the
model was parameterized such that mortality and
emigration increased, immigration decreased, and
reproduction declined to zero for this population
during a high-flow year. In the year after a high-
flow event (i.e., the “high-flow+1 year”), the
model was parameterized such that the amount
of newly created habitat increased, increasing the
carrying capacity and attracting an increased
number of immigrants. In addition, adult mortal-
ity decreased to baseline levels, and hatch year
mortality declined to the lowest observed levels.
After the high-flow+1 year, immigration/emigra-
tion stabilized at baseline levels, and hatch year
mortality increased annually until the next high-
flow event occurred following a three-year win-
dow of low mortality (Hunt 2016). The model
was parameterized such that the amount of habi-
tat available to birds in GVP declined each year
by a randomly chosen percentage with a uniform
distribution spanning 10–60% (U.S. Fish and
Wildlife Service 2009) until the next high-flow
event occurred, simulating the variable impact of
erosion and vegetation encroachment. Additional

details regarding the baseline model can be found
in Catlin et al. (2016).
The baseline metapopulation model was simu-

lated for 1000 stochastic replicates of 100 yr to
estimate long-term mean values for extinction
risk, metapopulation and subpopulation size,
and time to extinction. The results showed, given
these baseline parameters and assuming the cur-
rent 20-year high-flow return interval continues,
that the metapopulation was unlikely to become
extinct under current conditions (0.0 probability
of extinction) and would support a population of
203 adults after 100 yr (Table 1; Catlin et al.
2016). The PLT and LCL subpopulations were
predicted to have low extinction probabilities
(0.0 and 0.003, respectively), supporting popula-
tions totaling 123 and 58 adults, respectively,
after 100 yr (Table 1; Catlin et al. 2016). The GVP
subpopulation had a greater risk of extinction
(0.48) and would likely only support approxi-
mately 22 adults by year 100 given the current
disturbance regime (Table 1; Catlin et al. 2016).
For reference, the 2014 population size was esti-
mated at 448 (�8) breeding adults for the com-
bined LCL and GVP subpopulations (D. H.
Catlin, unpublished data) and 100–110 adults for
the PLT subpopulation (M. Bomberger Brown,
unpublished data).
We included both demographic and environ-

mental stochasticity in the baseline model.
Stochasticity is automatically incorporated by
sampling parameters for reproduction (i.e., per-
centage of males/females breeding, distribution of
broods per breeding female) and mortality from
binomial distributions governed by the user-given
population mean (i.e., the demographic parame-
ter value given) and value for the SD due to
environmental variation for each parameter.
Additional environmental stochasticity was incor-
porated by probabilistically modeling high-flow
events (or “catastrophes” in Vortex) and by reduc-
ing carrying capacity at GVP by a random per-
centage sampled from a uniform distribution each
year. For more information on parameter calcula-
tions and their treatment in Vortex, see Catlin
et al. (2016) and Lacy et al. (2015).
In the current study, we compared results of

scenarios conducted in this study (see next sub-
section) to those of the baseline model reported
in Catlin et al. (2016) to explore how climate
change may shift metapopulation extinction risk
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and abundance from those under the current dis-
turbance regime.

Population viability analysis
In the current study, we simulated scenarios in

Vortex for each year post-high-flow event, using
dispersal, reproduction, and mortality rates asso-
ciated with the appropriate number of years
since the last high-flow event occurred. From
these simulations, we calculated each subpopula-
tion’s deterministic finite rate of increase (kdet) to
determine whether populations were sources
(kdet ≥ 1) or sinks (kdet < 1; Pulliam 1988). In
Vortex, kdet is calculated from a life table analysis
of the mean reproduction and survival rates used
in the model and does not take into account
immigration or emigration (Lacy et al. 2015).

We then simulated a series of PVA scenarios in
which we used baseline metapopulation parameter

values for all parameters except where noted.
Because of high uncertainty in hydrologic projec-
tions (Hagemann et al. 2013), we conducted “a
broad exploration of novel futures,” as recom-
mended by Seidl et al. (2016). These scenarios
included:

1. Population isolation scenario: We assumed
that subpopulations do not form a metapop-
ulation, and we prohibited dispersal between
all pairs of subpopulations. This scenario
simulated the viability of subpopulations if
habitat supporting the other subpopula-
tions in the metapopulation were destroyed
through, for example, land-use change not
related to dams. Given the small size of sub-
populations and that birds in PLT primarily
use human-maintained habitats, there is a
strong chance that the metapopulation could

Table 1. Scenario results compared to those of the baseline population viability analysis model (Catlin et al.
2016) for a piping plover metapopulation (“Metapop”).

Scenario

High-flow
return

interval (yr)

Dispersal
among

populations

Mean population size (number
of adults; year 100)

Mean probability
of extinction (year 100)

PLT GVP LCL Meta-pop PLT GVP LCL Meta-pop

1. Baseline† 20 Yes 123 22 58 203 0.0 0.48 0.003 0.0
2. Population isolation‡ 20 No 122 0 16 138‡ 0.002 1.0 0.65 0.002‡
3. Baseline No high-flow

events
Yes 120 0 53 173 0.002 1.0 0.007 0.001

4. Baseline 4§ Yes 124 85 69 277 0.0 0.02 0.001 0.0
5. Baseline 4 No 123 27 16 166‡ 0.0 0.75 0.64 0.0‡
6. Dynamic populations¶,

local disturbance#
20 Yes 0 0 0 0 1.0 1.0 1.0 0.98

7. Dynamic populations,
local disturbance

4 Yes 103 107 106 317 0.12 0.10 0.10 0.07

8. Dynamic populations,
global disturbance#

20 Yes 0 0 0 0 1.0 1.0 1.0 1.0

9. Dynamic populations,
global disturbance

4 Yes 38 39 43 120 0.60 0.58 0.57 0.53

Note: Populations that comprised the metapopulation included Platte River (PLT), Gavins Point Reach (GVP), and Lewis
and Clark Lake (LCL).

† Results according to Catlin et al. (2016).
‡ Population isolation scenario used parameters from the baseline scenario, with the exception that no dispersal was

allowed between populations. In table columns for “Metapop” for any scenario where there is no dispersal between popula-
tions, the value for mean population size is the sum of the population sizes for individual populations, and the value for mean
probability of extinction is the probability that all three populations become extinct in 100 yr in the same model iteration. For
these scenarios, a true metapopulation does not exist.

§ For all scenarios listed here where the high-flow return interval (FRI) is <20 yr, the results of this study indicated that the
given FRI is the optimal disturbance regime for the conditions modeled in that particular scenario. For example, for scenario 4
above, we found that the optimal FRI for the baseline scenario is 1 flood every 4 years.

¶ In all scenarios with “dynamic populations,” we assumed that all three populations in the metapopulation had carrying
capacities as well as mortality, reproduction, immigration, and emigration rates that were affected by the time since a high-flow
event last occurred. This is in contrast to the baseline scenario, where high flows affected the demographic and movement rates
for piping plovers within GVP only.

# In the dynamic populations scenarios, we modeled some scenarios where high-flow events were “local” (i.e., one event
affected only one population) and “global” (i.e., events were spatially autocorrelated and affected all populations in the
metapopulation).

 ❖ www.esajournals.org 6 January 2017 ❖ Volume 8(1) ❖ Article e01653

ZEIGLER ET AL.



be reduced to a single population in the
future.

2. High-flow regime scenarios: We simulated
24 scenarios in which we considered the
baseline metapopulation structure but (1)
assumed high-flow events never occurred,
(2) varied the high-flow return interval in
one-year increments from 1 to 20 yr, and (3)
varied the high-flow return interval in 10-
year increments from 20 to 40 yr. These sce-
narios allowed us to (1) understand viability
and abundance today under a suppressed
disturbance regime compared to those
under a more historical regime and (2) eval-
uate the effects of climate-driven alterations
to the disturbance regime, should climate
alterations directly or indirectly increase or
decrease high-flow return intervals. Given
historical water management trends and cli-
mate change projections, it is most likely
that the frequency of high-flow events will
remain the same or increase.

3. Dynamic metapopulation scenarios: We simu-
lated a hypothetical metapopulation under
“historical” conditions where all three sub-
populations exhibit immigration, emigration,
mortality, and reproduction rates that are a
function of the time since a high-flow event
last occurred. Results of these scenarios pro-
vided a contrast to viability under current,
disturbance-suppressed conditions, where
high flows only impact GVP. We simulated
models where high-flow events were local
(i.e., only one subpopulation was affected per
high-flow event) or global (i.e., all subpopula-
tions were simultaneously affected by a single
high-flow event), and we varied the high-flow
return interval in one-year increments from 0
to 20 yr. Global scenarios also allowed us to
simulate the effects of climate-driven changes
to the disturbance regime, where much larger
extreme weather events than currently
observed affect habitat for all three popula-
tions simultaneously. Although more extreme
weather events are likely in the future, it is
possible but unlikely that a single disturbance
would impact all subpopulations simultane-
ously based on the size of past high-flow
events and a projected lack of autocorrelation
in future events (Alexander et al. 2011).

All models were simulated for 1000 stochastic
replicates of 100 yr to estimate mean values for
extinction risk and population size.

Sensitivity analysis
Given the uncertainty in some parameters

(e.g., percentage of adult females breeding) and
the anticipated importance of others (e.g., fre-
quency of high flows, rate of decline in carrying
capacity), we conducted a sensitivity analysis for
select parameters used in the baseline metapopu-
lation model. We considered the rate of habitat
loss, difference in dispersal rates between hatch
year birds and adults, percentage of females
breeding, frequency of high-flow events, emigra-
tion from GVP during a high-flow year, immi-
gration into GVP in a high-flow+1 year, habitat
carrying capacity for all three subpopulations,
and adult mortality at GVP during a high-flow
year. We did not systematically analyze other
mortality and reproduction rates, because previ-
ous studies have shown that models are sensitive
to adult and juvenile mortality (e.g., Calvert et al.
2006, Brault 2007).
We conducted sensitivity analysis sensu

McCarthy et al. (1995). Using Vortex, we gener-
ated 500 parameter sets for the parameters listed
above, allowing the program to randomly choose
a value from a uniform distribution within a
user-specified range for each parameter consid-
ered (Latin hypercube sampling; Table 2). The
program simulated 500 stochastic replicates for
each parameter set (keeping all other parameters
in the model at baseline values) to produce
250,000 binary observations of population persis-
tence or extinction by year 100. Using the param-
eter set values as independent variables and
whether the population went extinct by year 100
as the binary dependent variable, we conducted
logistic regression using R (R Development Core
Team 2014) and compared the standardized
regression coefficients to rank the importance of
each independent variable in relation to extinc-
tion risk. A higher absolute value for a standard-
ized regression coefficient indicates a higher
level of model sensitivity for that parameter, and
the relative importance of each parameter is
reflected in the relative magnitude of the stan-
dardized regression coefficient (McCarthy et al.
1995).
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RESULTS

The kdet values revealed that both PLT and LCL
were consistently source populations irrespective
of disturbance frequency, with values of 1.15 and
1.02, respectively (Fig. 2). GVP’s role as a source
or sink varied depending on how long it had been
since a high-flow event last occurred. During a
high-flow year, when productivity and survival
were at their lowest levels, kdet approached 0, and
the population was a strong sink. From the high-
flow+1 year to 15 years post-event, the popu-
lation was a source (kdet = 1.27 to 1.00), with
reproduction exceeding mortality. The popula-
tion was a sink from 16 years post-event until
the next high flow occurred (kdet ≤ 0.98; Fig. 2).

The metapopulation’s extinction probability
was highly sensitive to the population’s percent-
age of females breeding (negative correlation)
followed by PLT’s habitat carrying capacity
(positive correlation) and GVP’s annual rate of
habitat loss due to erosion and vegetation
encroachment (negative correlation; Table 2).
Extinction risk was moderately sensitive (i.e.,
relative to other parameters considered) to the
frequency of high-flow events and was compara-
tively insensitive to the remaining parameters
tested (Table 2).

Predictions for population size and extinction
risk were substantially affected by both the
metapopulation structure and the disturbance
regime. Isolated populations (i.e., in the popula-
tion isolation scenario) with a 20-year high-flow
return interval supported fewer adults by year
100, while GVP and LCL had substantially higher
risks of extirpation compared to the results of the
baseline metapopulation model (Table 1). The
metapopulation supported the highest number of
adults and had the lowest extinction risk at 277
adults and 0.0, respectively, when subpopulations
were linked through dispersal and when high
flows occurred every 4 years (Table 1, Fig. 3). The
predicted population size declined, however,
when high flows occurred more often than every
4 years (Fig. 3). The predicted population size
also declined when high-flow events occurred less
frequently than every 4 years (Fig. 3).
When we assumed all populations in the

metapopulation were dynamic, where carrying
capacity, mortality, reproduction, and immigra-
tion/emigration were related to the time since a
high-flow event occurred for all populations, we
found the metapopulation could not persist over
longer (i.e., ≥15-year intervals) high-flow return
intervals (Fig. 4). Assuming high-flow events were
localized (i.e., a high-flow event only impacted

Table 2. Structure and results of the sensitivity analysis for select parameters used within the baseline population
viability analysis model for the piping plover metapopulation.

Parameter
Baseline
value

Min
value

Max
value

Standardized coefficients (z-values)

Metapop PLT GVP LCL

Females breeding (%) 100 75 100 �140.5 �143.5 �108.5 �167.6
PLT habitat carrying capacity (number of individuals) 135 75 180 �67.7 �68.8 �50.3 �106.8
Annual % of habitat loss for GVP in the absence of
high flows (% of current carrying capacity)

35 10 80 55.2 51.3 188.0 116.8

Frequency of high flows† (annual probability) 5 1 25 �30.0 �27.0 �170.6 �89.8
GVP carrying capacity in a high-flow+1 year
(number of individuals)

2154 1000 3000 �7.7 �7.5 �8.5 �11.5

LCL habitat carrying capacity (number of individuals) 98 50 150 �6.8 �6.9 �9.5 �7.7
Dispersal modifier (ratio of hatch year to adult
dispersal rates)

2.3 1 2 4.3 4.7 2.3 7.0

Dispersal from GVP to PLT in a high-flow year 5.9 1.6 10 �3.7 �4.5 2.1 �0.4
Dispersal from PLT to GVP in a high-flow+1 year 4.1 1.7 6 2.5 3.4 �16.4 �5.9
Dispersal from GVP to LCL in a high-flow year 31.5 8.4 40 1.587 2.213 4.674 �0.737
Adult mortality for GVP in a high-flow year (%) 35.5 27.3 40 1.568 1.380 9.854 9.359
Dispersal from LCL to GVP in a high-flow+1 year 20.4 7.8 30 0.926 0.065 3.376 7.984

Note: The metapopulation (“Metapop”) consisted of subpopulations on the Platte River (PLT) and on the Missouri River at
Gavins Point Reach (GVP) and Lewis and Clark Lake (LCL).

† Although the demographic rates for piping plovers within PLT and LCL were not directly affected by high-flow events,
these populations were indirectly affected through changes in GVP’s immigration and emigration rates during and following
high-flow events.
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one subpopulation), the metapopulation had a
0.99 probability of extinction in 100 yr under the
current disturbance regime (i.e., high-flow return
interval of 20 yr; Table 2, Fig. 4). In this scenario,
metapopulation size was optimized at a four-year
high-flow return interval. At this return interval,
the dynamic metapopulation had a 0.07 probabil-
ity of extinction and could support a larger total
population size at 317 adults compared to the
more static baseline metapopulation (277 adults
at an optimal four-year return interval; Table 2,
Fig. 4). A dynamic metapopulation was more
likely to persist when high flows were localized
(Table 2, Fig. 4); a metapopulation in which one
high-flow event affected all subpopulations
simultaneously had a 0.53 probability of extinc-
tion and supported a total population of 120
adults even at its optimal return interval of 4 yr.

DISCUSSION

Piping plover metapopulation dynamics on
the Missouri and Platte rivers, under both current
and possible future scenarios, provide empirical
support for several important theoretical con-
cepts relating to species in dynamic habitats:

1. Species in dynamic environments are more
at risk from habitat loss (Wimberly 2006,
North and Ovaskainen 2007, Martin and
Fahrig 2016) and require larger quantities of
suitable habitat (Johst et al. 2011) than spe-
cies inhabiting landscapes with minimal
habitat turnover.

High-flow events are the natural habitat cre-
ation mechanisms on the Missouri, Platte, and
many other large floodplain rivers, and habitat is
lost quickly to erosion and vegetation encroach-
ment without these events. Therefore, suppres-
sion of the disturbance regime equates to a loss of
habitat for piping plovers and other disturbance-
dependent species in the system. Piping plovers
exhibit several adaptations to the historical distur-
bance regime in the Great Plains by (1) laying

Fig. 3. Population size at year 100 for individual
subpopulations at Gavins Point Reach (GVP), Lewis
and Clark Lake (LCL), and Platte River (PLT) and for
the entire metapopulation as a function of the high-
flow return interval.

Fig. 2. Deterministic intrinsic rates of population
growth (kdet) for piping plover populations at Gavins
Point Reach (GVP), Lewis and Clark Lake (LCL), and
Platte River (PLT). Values were calculated from param-
eters used in the baseline population viability analysis
metapopulation model, based on observations of the
populations from 2008 to 2013 (Catlin et al. 2016). kdet
values ≥1 are indicative of a stable or growing source
population, and values <1 are indicative of a declining
sink population. The kdet values for GVP drop below
at 15 years post-high-flow event, suggesting that this
population becomes a sink when a high-flow event
has not occurred in 16 or more years.
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eggs in mid- to late May immediately following
historical spring high-flow peaks (Catlin et al.
2010), (2) renesting up to four times in a breeding
season in the event that eggs or hatchlings are lost
to flooding (U.S. Fish and Wildlife Service 2000),
(3) compensating for high mortality and low
reproduction in a high-flow year with high repro-
duction and recruitment in years following those
disturbances (Catlin et al. 2016), and (4) increas-
ing dispersal rates and distances during high-
flow years (Catlin et al. 2016). Such life history
adaptations are expected for species in dynamic
environments where disturbances are frequent,
large, and predictable (Lytle and Poff 2004), char-
acteristic of the historical Missouri and Platte riv-
ers (Hesse and Mestle 1993). As observed in other
species adapted to a specific disturbance regime
(Kelly et al. 2014, Ranius et al. 2014, McElderry
et al. 2015, Paniw et al. 2015), we found that the
piping plover metapopulation supported fewer

adults (74 adults) and that the GVP subpopula-
tion had a higher risk of extinction (+0.45) under
a suppressed disturbance regime compared to a
more natural four-year high-flow return interval
under which this species adapted. In addition, a
metapopulation that was fully dynamic, where
habitat availability was dependent on the distur-
bance regime for all three subpopulations in the
metapopulation, would have a near-certain risk
of extinction under the current, suppressed dis-
turbance regime.
Furthermore, the only subpopulation with

habitat not artificially maintained, GVP, had a
0.48–1.0 probability of extinction at high-flow
return intervals ≥20 yr. An important critical
threshold for persistence (Keymer et al. 2000) in
this dynamic subpopulation exists where high-
flow events occur at ≤15-year intervals; at this
threshold, the subpopulation acted as a source
instead of a sink.

Fig. 4. (a) Total population size at model year 100 and (b) the probability of extinction for the Missouri–Platte
River piping plover metapopulation based on population viability analysis scenarios that assume (1) current
metapopulation structure and disturbance effects (i.e., baseline model conditions; “baseline”), (2) a metapopula-
tion where component populations are dynamic and where disturbances are not spatially autocorrelated
(“dynamic local”), and (3) a metapopulation where component populations are dynamic and where disturbances
are spatially autocorrelated (“dynamic global”). In these dynamic population scenarios, the habitat carrying
capacities and mortality, reproduction, and dispersal rates for all three populations are affected by the time since
a high flow last occurred. This is in contrast with the baseline scenario, where demographic and movement rates
are affected by the time since a high flow last occurred for the Gavins Point Reach population only. Note: Baseline
probability of extinction is 0.0 and falls along the x-axis in b.
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Sensitivity results also lend credence to the
hypothesis that species in dynamic landscapes are
especially vulnerable to habitat loss. Metapopula-
tion persistence was most sensitive to parameters
that were related to habitat loss: percentage of
females breeding (partially a function of carrying
capacity) and, to a lesser extent, PLT’s carrying
capacity, the rate of habitat loss at GVP, and the
frequency of high-flow events. Similarly, the per-
sistence of GVP was even more sensitive to these
parameters, as exemplified in the higher magni-
tudes of the standardized regression coefficients.

Climate change can affect habitat availability
for disturbance-dependent species by influencing
disturbance regimes in dynamic landscapes (e.g.,
Serra-Diaz et al. 2015). Although there is high
uncertainty in hydrologic projections for rivers
worldwide (Hagemann et al. 2013), including
the Missouri and Platte rivers (Thomson et al.
2005), the general consensus is that the frequency
of high-flow events will increase under a chang-
ing climate in the Great Plains (Alexander et al.
2011). Therefore, in this region, climate change
will most likely revert the disturbance regime
from a 20-year high-flow return interval in the
direction of more historical patterns to the benefit
of piping plovers. Climate change would have
the greatest positive impacts on the metapopula-
tion if increased precipitation allows for high-
flow events at ≤15-year return intervals, with the
highest metapopulation abundance occurring at
a four-year return interval. High variability in
model predictions (Hagemann et al. 2013, Wueb-
bles et al. 2014) and inconsistencies in trends
over the past 30 years (Fassnacht et al. 2016),
however, make predicting more specific future
frequencies in high-flow events difficult.

In addition, climate models suggest that
increased temperatures will reduce spring snow-
melt peaks but increase winter flows in the Great
Plains (Wuebbles and Hayhoe 2004). By reducing
reproduction to 0 for GVP in high-flow years, we
modeled high flows as events like that of the
2010/2011 flood that occurs during the late spring/
summer months. Therefore, piping plovers could
benefit even more from climate change if high
flows occur in winter months, producing habitat
but not hindering reproduction (Catlin et al. 2010,
2015).

If there is an increased frequency of droughts
or decreases in stream-flow in this region, which

is unlikely but possible according to some
climate change scenarios (Thomson et al. 2005),
climate change will continue to push the distur-
bance regime farther from historical patterns.
Under this scenario, the risk of extirpation for the
GVP subpopulation approaches certainty, and
the persistence of the metapopulation will be lar-
gely due to the persistence of human-maintained
plagioclimax habitats at LCL and PLT. In general,
changes outside the natural range of disturbance,
temperature, precipitation, or other environmen-
tal factors will likely have drastic consequences
for ecosystem structure depending on the rate of
those changes and a species’ adaptive capacity
(Poff et al. 2002). Land-use change and manage-
ment can exacerbate climate change-related alter-
ations to disturbance regimes, causing “resource
bottlenecks” that have led to population crashes
and extinctions for several species (Maron et al.
2015).

2. Species in dynamic habitats are also vulner-
able to a loss in habitat connectivity (Johst
et al. 2011).

A loss of connectivity in this metapopulation
greatly increased the risk of extirpation of two
(LCL and GVP) of the three subpopulations,
regardless of the frequency of high-flow events.
The risk of extirpation for LCL rose from 0.003 to
0.65 and from 0.004 to 0.64 under 20-year and
four-year high-flow return intervals, respectively,
when emigration from neighboring subpopula-
tions was prohibited. Similarly, GVP’s risk of
extirpation increased from 0.48 to 1.0 under a 20-
year high-flow return interval and from 0.02 to
0.75 under a four-year return interval. Connec-
tivity among habitat patches and subpopulations
in dynamic landscapes allows individuals to
escape from areas of habitat destruction and to
(re)colonize newly created or improved habitats
(Johst et al. 2011). In this metapopulation, con-
nectivity to the source populations at PLT and
LCL also likely improved the persistence of GVP
through rescue effects (Brown and Kodric-Brown
1977).

3. Persistence of species in dynamic habitats
may be optimized at intermediate disturbance
regimes (Wimberly 2006) with non-spatially
autocorrelated disturbances (Kallimanis et al.
2005, Vuilleumier et al. 2007).

 ❖ www.esajournals.org 11 January 2017 ❖ Volume 8(1) ❖ Article e01653

ZEIGLER ET AL.



Peak metapopulation persistence and abun-
dance occurred when high-flow events of the
magnitude observed in 2010/2011 occurred every
4 years, both when only GVP experienced habi-
tat turnover (baseline metapopulation scenarios)
and when all three subpopulations experienced
habitat turnover (dynamic population scenarios).
Metapopulation extinction risk and abundance
declined most rapidly when high flows occurred
more frequently than every 4 years. In the unli-
kely event that climate change increases the fre-
quency of high flows beyond this threshold, the
climate-driven disturbance regime could exceed
the metapopulation’s ability to recover from dis-
turbances, as seen in other systems (Swab et al.
2012, Penman et al. 2015).

Our results also highlight more complex rela-
tionships between climate and disturbance in this
region if larger, more extreme, spatially autocor-
related high-flow events begin to destabilize
habitats used by PLT and LCL simultaneously.
When we assumed high-flow events influenced
the demography and movement of all subpopu-
lations but were local in nature (i.e., a high-flow
event only affected one subpopulation at a time,
no spatial autocorrelation in disturbance),
metapopulation extinction risk was higher and
abundance was lower compared to the baseline
model. The only exception to these trends
occurred at four- and five-year high-flow return
intervals, where abundance for the fully dynamic
metapopulation was predicted to be higher than
that of the baseline model at equivalent high-
flow return intervals. When high-flow events
were global in nature (i.e., one event affected all
three subpopulations simultaneously, spatial
autocorrelation in disturbance), metapopulation
extinction risk was always substantially higher
and abundance lower compared to local dynamic
and baseline scenarios. As in any metapopula-
tion, regional stochasticity can lead to spatially
correlated population dynamics that ultimately
reduce the likelihood of metapopulation persis-
tence (Hanski 1998). When disturbances are spa-
tially autocorrelated in dynamic landscapes,
particularly at low disturbance frequencies, a
large proportion of habitat can be simultaneously
rendered unsuitable and cause metapopulation
extirpation (e.g., Stelter et al. 1997). In a novel
future, the focal piping plover metapopulation
would likely be extirpated if rare single, very

extreme high-flow events affected the entire
metapopulation, particularly if such events occur
within an otherwise suppressed (i.e., high-flow
return interval ≥ 20 yr) disturbance regime.

Conservation implications
A suppressed disturbance regime on the Mis-

souri and Platte rivers increased the extirpation
risk of component piping plover subpopulations
and decreased the functional carrying capacity of
the metapopulation. Climate change could reduce
extinction risk and improve abundance by increas-
ing the frequency of high-flow disturbances,
ultimately increasing habitat availability. This
beneficial climate change effect, however, depends
on the interplay between climate change and
land-use policies in this and other disturbance-
dependent landscapes (e.g., Regos et al. 2015).
With reduced mountain snowpack, reduced sum-
mer precipitation, and higher temperatures,
droughts and reduced summer flows are also a
possibility in the Great Plains and Midwestern
United States (Wuebbles and Hayhoe 2004, Chien
et al. 2013). Our research indicates that, should
managing entities limit winter flows in an effort to
store water in reservoirs for summer use, this pip-
ing plover metapopulation could be negatively
affected in several ways. Despite higher winter
precipitation levels, many high-flow events that
would otherwise create habitat on the river could
be suppressed and released later in the summer.
Our models show that piping plover metapopula-
tion abundance and viability would continue to
decline from present levels if the high-flow return
interval is further suppressed. In addition, an
increased storage of water in Lewis and Clark
Lake for later summer use could submerge some
of the sandbar habitat used by the LCL subpopula-
tion, reducing the already small carrying capacity
of that subpopulation and overall metapopulation
capacity. Finally, artificial high summer flows are
generally harmful to piping plover reproduction
and recruitment (Catlin et al. 2013, 2014).
Under the current suppressed flow regime, the

consistent presence of early-successional habitat
(i.e., plagioclimax habitat) able to support even a
small source subpopulation (like PLT) as well
as connectivity among subpopulations was
necessary for the persistence of the metapopula-
tion. Plagioclimax habitat that supports PLT is
maintained through mining operations, and this
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source population acted as a stabilizing buffer
regardless of the high-flow return interval. Some
man-made disturbances and the habitats they
create may become important refugia for early-
successional species, as also observed for the
pyrophytic dewy pine (Drosophyllum lusitanicum)
in a fire-suppressed Mediterranean heathland
(Paniw et al. 2015).

We conclude that climate change could have
positive effects on disturbance-dependent species
in ecosystems where disturbances have been
anthropogenically suppressed when climatic
shifts move disturbance regimes toward more
historical patterns. However, this benefit will
only be realized if land-use management policies
do not counteract expected benefits. Further-
more, stable source populations, even if uninten-
tionally maintained through anthropogenic
activities, may be critical for the persistence of
metapopulations of early-successional species
under both suppressed disturbance regimes and
disturbance regimes where climate change has
further altered disturbance frequency or scope.
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