16 research outputs found

    Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update

    Get PDF
    27 páginas, 6 figuras, 2 tablas.To meet the energy requirements of high-yielding dairy cows, grains and fats have increasingly been incorporated in ruminant diets. Moreover, lipid supplements have been included in ruminant diets under experimental or practical conditions to increase the concentrations of bioactive n-3 fatty acids and conjugated linoleic acids in milk and meat. Nevertheless, those feeding practices have dramatically increased the incidence of milk fat depression in dairy cattle. Although induction of milk fat depression may be a management tool, most often, diet-induced milk fat depression is unintended and associated with a direct economic loss. In this review, we give an update on the role of fatty acids, particularly originating from rumen biohydrogenation, as well as of rumen microbes in diet-induced milk fat depression. Although this syndrome seems to be multi-etiological, the best-known causal factor remains the shift in rumen biohydrogenation pathway from the formation of mainly trans-11 intermediates toward greater accumulation of trans-10 intermediates, referred to as the trans-11 to trans-10 shift. The microbial etiology of this trans-11 to trans-10 shift is not well understood yet and it seems that unraveling the microbial mechanisms of diet-induced milk fat depression is challenging. Potential strategies to avoid diet-induced milk fat depression are supplementation with rumen stabilizers, selection toward more tolerant animals, tailored management of cows at risk, selection toward more efficient fiberdigesting cows, or feeding less concentrates and grainsL. Dewanckele received a PhD grant from the Special Research Fund of Ghent University (BOF-Belgium, grant number BOF15/DOC/246). P. G. Toral benefits from a Ramón y Cajal research contract from the MINECO (RYC-2015-17230), co-funded by the European Social Fund. The authors have not stated any conflicts of interest.Peer reviewe

    Supplementation of DHA-Gold pre and/or postnatally to goat kids modifies in vitro methane production and rumen morphology until 6 mo old

    No full text
    This study aimed to investigate the effect of pre and/or postnatal supplementation of a dry whole cell algae (DHA-Cold) to goat kids, on in vitro methane (CH4) production, animal growth, and rumen morphology at the age of 6 mo. Furthermore, the in vitro retreatment effect of DHA-Gold was evaluated. Twenty pregnant Saanen goats giving birth to 2 male kids were used. Half of these does were supplemented (D+) with 18.2 g/d of DHA-Gold in the last 3 wk of pregnancy, whereas the other half was not (D). After kidding, one goat kid per doe in both groups was supplemented daily with 0.28 g/kg of body weight of DHA-Gold (k+) until 12 wk, whereas the other goat kids were untreated (k). This resulted in 4 experimental groups D+k+, D+k, D k+, and D k, In vitro incubations were performed at the ages of 4 wk, 11 wk, and 6 mo. At the age of 6 mo, goat kids were euthanized and additional incubations were performed supplementing 4 doses of DHA-Gold (0, 0.4, 0.8, and 1.6 mg/mL). Additionally, rumen tissue of the atrium ruminis, ventral rumen, and dorsal blind sac were collected to assess rumen morphology. Rumen inocula of 4-wk-old goat kids supplemented D+ showed lower (P < 0.05) in vitro CH4 production, however, this was mainly due to a reduction in the overall fermentation, while CH4 expressed relatively to total volatile fatty acids (VFA) was higher when goat kids were treated D+ or k+. The detrimental D+ effect on VFA production diminished at 11 wk old but remained a tendency (0.05 < P < 0.1). As for 4 wk D+ as well as k+ supplementation of DHA-Gold stimulated rather than inhibited in vitro CH4 production expressed relative to total VFA. Supplementation of DHA-Gold either D+ or k+ decreased density, width, and surface area of the ruminal papillae. However, no effect on animal growth was observed. Moreover, detrimental effects of D+ or k+ treatment on VFA production or stimulation of relative CH4 production were no longer observed at 6 mo old. Nevertheless, direct exposure of DHA-Gold to 6-mo-old inoculum linearly (P < 0.05) decreased CH4 and VFA production, which tended (P = 0.06) to be greater when using D-rumen inoculum. Accordingly, neither D+ nor k+ DHA-Gold supplementation showed potential for reduction of rumen methanogenesis. Furthermore, this early life intervention could represent some risk for impaired rumen papillae development, which, however, did not impair animal performance

    Unique authigenic mineral assemblages reveal different diagenetic histories in two neighbouring cold-water coral mounds on Pen Duick Escarpment, Gulf of Cadiz

    No full text
    Alpha Mound and Beta Mound are two cold-water coral mounds, located on the Pen Duick Escarpment in the Gulf of Cadiz amidst the El Arraiche mud volcano field where focused fluid seepage occurs. Despite the proximity of Alpha Mound and Beta Mound, both mounds differ in their assemblage of authigenic minerals. Alpha Mound features dolomite, framboidal pyrite and gypsum, whereas Beta Mound contains a barite layer and predominantly euhedral pyrite. The diagenetic alteration of the sedimentary record of both mounds is strongly influenced by biogeochemical processes occurring at shallow sulphate methane transition zones. The combined sedimentological, petrographic and isotopic analyses of early diagenetic features in gravity cores from Alpha Mound and Beta Mound indicate that the contrast in mineral assemblages between these mounds is caused by differences in fluid and methane fluxes. Alpha Mound appears to be affected by strong fluctuations in the fluid flow, causing shifts in redox boundaries, whereas Beta Mound seems to be a less dynamic system. To a large extent, the diagenetic regimes within cold-water coral mounds on the Pen Duick Escarpment appear to be controlled by fluid and methane fluxes deriving from layers underlying the mounds and forcings like pressure gradients caused by bottom current. However, it also becomes evident that authigenic mineral assemblages are not only very sensitive recorders of the diagenetic history of specific cold-water coral mounds, but also affect diagenetic processes in turn. Dissolution of aragonite, lithification by precipitation of authigenic minerals and subsequent brecciation of these lithified layers may also exert a control on the advective and diffusive fluid flow within these mounds, providing a feedback mechanism on subsequent diagenetic processes
    corecore