56 research outputs found

    A VLT/NACO Study of Star Formation in the Massive Embedded Cluster RCW 38

    Full text link
    We present adaptive optics (AO) near-infrared (JHKs) observations of the deeply embedded massive cluster RCW 38 using NACO on the VLT. Narrowband AO observations centered at wavelengths of 1.28, 2.12, and 2.17 micron were also obtained. The area covered by these observations is about 0.5 pc square, centered on the O star RCW 38 IRS2. We use the JHKs colors to identify young stars with infrared excess. Through a detailed comparison to a nearby control field, we find that most of the 337 stars detected in all three infrared bands are cluster members (~317), with essentially no contamination due to background or foreground sources. Five sources have colors suggestive of deeply embedded protostars, while 53 sources are detected at Ks only; their spatial distribution with respect to the extinction suggests they are highly reddened cluster members. Detectable Ks-band excess is found toward 29 +/- 3 % of the stars. For comparison to a similar area of Orion observed in the near-infrared, mass and extinction cuts are applied, and the excess fractions redetermined. The resulting excesses are then 25 +/- 5 % for RCW 38, and 42 +/- 8 % for Orion. RCW 38 IRS2 is shown to be a massive star binary with a projected separation of ~500 AU. Two regions of molecular hydrogen emission are revealed through the 2.12 micron imaging. One shows a morphology suggestive of a protostellar jet, and is clearly associated with a star only detected at H and Ks, previously identified as a highly obscured X-ray source. Three spatially extended cometary-like objects, suggestive of photoevaporating disks, are identified, but only one is clearly directly influenced by RCW 38 IRS2. A King profile provides a reasonable fit to the cluster radial density profile and a nearest neighbor distance analysis shows essentially no sub-clustering.Comment: 45 pages (17 figures), and full source table. Full resolution version available at http://www.cfa.harvard.edu/~bourke/rcw38

    DESI Complete Calibration of the Color-Redshift Relation (DC3R2): Results from early DESI data

    Full text link
    We present initial results from the Dark Energy Spectroscopic Instrument (DESI) Complete Calibration of the Color-Redshift Relation (DC3R2) secondary target survey. Our analysis uses 230k galaxies that overlap with KiDS-VIKING ugriZYJHKsugriZYJHK_s photometry to calibrate the color-redshift relation and to inform photometric redshift (photo-z) inference methods of future weak lensing surveys. Together with Emission Line Galaxies (ELGs), Luminous Red Galaxies (LRGs), and the Bright Galaxy Survey (BGS) that provide samples of complementary color, the DC3R2 targets help DESI to span 56% of the color space visible to Euclid and LSST with high confidence spectroscopic redshifts. The effects of spectroscopic completeness and quality are explored, as well as systematic uncertainties introduced with the use of common Self Organizing Maps trained on different photometry than the analysis sample. We further examine the dependence of redshift on magnitude at fixed color, important for the use of bright galaxy spectra to calibrate redshifts in a fainter photometric galaxy sample. We find that noise in the KiDS-VIKING photometry introduces a dominant, apparent magnitude dependence of redshift at fixed color, which indicates a need for carefully chosen deep drilling fields, and survey simulation to model this effect for future weak lensing surveys.Comment: 19 pages, 16 figures, submitted to MNRAS, interactive visualizations at https://jmccull.github.io/DC3R2_Overvie

    Biodiversity of Mineral Nutrient and Trace Element Accumulation in Arabidopsis thaliana

    Get PDF
    In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. The biodiversity that exists within a species can be utilized to investigate how regulatory mechanisms of individual elements interact and to identify genes important for these processes. We analyzed the elemental composition (ionome) of a set of 96 wild accessions of the genetic model plant Arabidopsis thaliana grown in hydroponic culture and soil using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of 17–19 elements were analyzed in roots and leaves from plants grown hydroponically, and leaves and seeds from plants grown in artificial soil. Significant genetic effects were detected for almost every element analyzed. We observed very few correlations between the elemental composition of the leaves and either the roots or seeds. There were many pairs of elements that were significantly correlated with each other within a tissue, but almost none of these pairs were consistently correlated across tissues and growth conditions, a phenomenon observed in several previous studies. These results suggest that the ionome of a plant tissue is variable, yet tightly controlled by genes and gene×environment interactions. The dataset provides a valuable resource for mapping studies to identify genes regulating elemental accumulation. All of the ionomic data is available at www.ionomicshub.org

    DESI complete calibration of the colour–redshift relation (DC3R2): results from early DESI data

    Get PDF
    We present initial results from the Dark Energy Spectroscopic Instrument (DESI) complete calibration of the colour–redshift relation (DC3R2) secondary target survey. Our analysis uses 230 k galaxies that overlap with KiDS-VIKING ugriZYJHKs photometry to calibrate the colour–redshift relation and to inform photometric redshift (photo-z) inference methods of future weak lensing surveys. Together with emission line galaxies (ELGs), luminous red galaxies (LRGs), and the Bright Galaxy Survey (BGS) that provide samples of complementary colour, the DC3R2 targets help DESI to span 56 per cent of the colour space visible to Euclid and LSST with high confidence spectroscopic redshifts. The effects of spectroscopic completeness and quality are explored, as well as systematic uncertainties introduced with the use of common Self-Organizing Maps trained on different photometry than the analysis sample. We further examine the dependence of redshift on magnitude at fixed colour, important for the use of bright galaxy spectra to calibrate redshifts in a fainter photometric galaxy sample. We find that noise in the KiDS-VIKING photometry introduces a dominant, apparent magnitude dependence of redshift at fixed colour, which indicates a need for carefully chosen deep drilling fields, and survey simulation to model this effect for future weak lensing surveys

    Reviewing the use of resilience concepts in forest sciences

    Get PDF
    Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context, and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesising how resilience is defined and assessed. Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience, and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. Summary Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context

    Expression quantitative trait locus mapping across water availability environments reveals contrasting associations with genomic features in Arabidopsis.

    No full text
    The regulation of gene expression is crucial for an organism's development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression

    Distribution, diversity, evolution, and survival of Helitrons in the maize genome

    No full text
    Homology and structure-based approaches were used to identify Helitrons in the genome of maize inbred B73. A total of 1,930 intact Helitrons from eight families (62 subfamilies) and >20,000 Helitron fragments were identified, accounting for ≈2.2% of the B73 genome. Transposition of at least one of these families is ongoing, but the most prominent burst of amplification activity was ≈250,000 years ago. Sixty percent of maize Helitrons were found to have captured fragments of nuclear genes (≈840 different fragment acquisitions, with tens of thousands of predicted gene fragments inside Helitrons within the B73 assembly). Most acquired gene fragments are undergoing random drift, but 4% were calculated to be under purifying selection, whereas another 4% exhibit apparent adaptive selection, suggesting beneficial effects for the host or Helitron transposition/retention. Gene fragment capture is frequent in some Helitron subfamilies, with as many as 10 unlinked genes providing DNA inserts within a single element. Gene fragment acquisition appears to positively influence element survival and/or ability of the Helitron to acquire additional gene fragments. Helitrons with gene fragment captures in the antisense orientation have a lesser chance of survival. Helitron distribution in maize exhibits severe biases, including preferential accumulation in relatively gene-rich regions. Insertions, however, are not usually found inside genes. Rather, Helitrons preferentially insert near (but not into) other Helitrons. This biased accumulation is not caused by a preference for cis or nearby transposition, suggesting a specific association between Helitron integration functions and unknown chromatin characteristics that specifically mark Helitrons
    corecore