20 research outputs found

    The ecological role of ponds in a changing world

    Get PDF
    The fifth conference of the European Pond Conservation Network (Luxembourg, June 2012) brought together researchers, environmental managers, and other stakeholders with the aim to share stateof-the-art knowledge on the ecology, management, and conservation of ponds in the context of the many challenges facing the wider water environment. Although well-known ecological patterns apply to most ponds in Europe and elsewhere, recent data highlight that part of the environmental variables governing pond biodiversity remain specific to climatic/ biogeographic regions and to elevation ranges, suggesting that, in addition to common practice, management plans should include range-specific measures. Beyond the contribution of individual ponds to the aquatic and terrestrial life, connected networks of ponds are vital in the provision of new climate space as a response to global climate change, by allowing the observed northward and/or upward movements of species. In terms of services, ponds offer sustainable solutions to key issues of water management and climate change such as nutrient retention, rainfall interception, or carbon sequestration. While the ecological role of ponds is now well established, authoritative research-based advice remains needed to inform future direction in the conservation of small water bodies and to further bridge the gap between science and practice

    The ecological role of ponds in a changing world

    Get PDF
    The fifth conference of the European Pond Conservation Network (Luxembourg, June 2012) brought together researchers, environmental managers, and other stakeholders with the aim to share stateof-the-art knowledge on the ecology, management, and conservation of ponds in the context of the many challenges facing the wider water environment. Although well-known ecological patterns apply to most ponds in Europe and elsewhere, recent data highlight that part of the environmental variables governing pond biodiversity remain specific to climatic/ biogeographic regions and to elevation ranges, suggesting that, in addition to common practice, management plans should include range-specific measures. Beyond the contribution of individual ponds to the aquatic and terrestrial life, connected networks of ponds are vital in the provision of new climate space as a response to global climate change, by allowing the observed northward and/or upward movements of species. In terms of services, ponds offer sustainable solutions to key issues of water management and climate change such as nutrient retention, rainfall interception, or carbon sequestration. While the ecological role of ponds is now well established, authoritative research-based advice remains needed to inform future direction in the conservation of small water bodies and to further bridge the gap between science and practice

    Isolation and Characterization of Microsatellite Markers in the Domestic Ferret (Mustela putorius furo)

    Get PDF
    Abstract: The domestic ferret (Mustela putorius furo) is an important model organism for the study of avian influenza and other diseases of humans and animals, as well as a popular pet animal. In order to evaluate genetic diversity and study disease relationships in ferrets, 22 nuclear microsatellite loci (17 dinucleotide and 5 tetranucleotide) were developed from ferret genomic libraries and organized into seven multiplex sets. Polymorphism was preliminarily assessed in one population in Australia and one in the USA, sampled with 25 individuals each. The loci displayed allelic diversity ranging from 1 to 5 alleles, and expected and observed heterozygosities ranging from 0.04 to 0.65 and 0.04 to 0.76, respectively. Additionally, the loci amplified products in 15 samples from the wild ancestor, European polecat (Mustela putorius) and domestic ferret-polecat hybrids. In polecat/hybrid samples, allelic diversity ranged from 3 to 8 alleles, and expected and observed heterozygosities ranged from 0.13 to 0.81 and 0.13 to 0.80 respectively. These markers will be useful for molecular assessments of genetic diversity and applications t

    Crystallography (electron backscatter diffraction) and chemistry (electron probe microanalysis) of the avian eggshell

    No full text
    Biomineralized structures are often used as indicators of environmental conditions in which they have grown. This study investigates the distribution of two trace elements, Mg and Na, commonly used in these environmental proxies, in the eggshells of seven different avian species to investigate the behavior of these elements in a mineralized system produced in a constant temperature environment where salinity is also strictly controlled. We used electron backscatter diffraction (EBSD) in conjunction with electron probe microanalysis (EPMA) to examine the eggshell structure to establish possible relationships between the crystallographic structures and the trace element distribution within each specimen as well as between species. A universal trend between species can be established for crystallographic structure and trace element distribution with some exceptions. Mg and Na vary across the eggshell profile in a carbonate system produced in a constant temperature environment, with links to crystallography remaining ambiguous. The reasons for variability in trace element distribution in such systems may therefore be more closely related to variation in organic distribution than merely environmental and physical crystallographic factors. The crystallographic data show the nucleation of small crystals on the mammillary caps with "fanning" of orientation until fusion of the mammillary caps to create large single crystals in the palisade layer with the elongation along the c-axis in the 〈0001〉 direction. The Mg and Na concentrations both decrease after nucleation but vary in their distribution and concentration between species after the nucleation stage of the shell
    corecore