37 research outputs found

    Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description

    Get PDF
    We present a fully atomistic simulation of linear optical spectra (absorption, fluorescence and circular dichroism) of the Light Harvesting Complex II (LHCII) trimer using a hybrid approach, which couples a quantum chemical description of the chlorophylls with a classical model for the protein and the external environment (membrane and water). The classical model uses a polarizable Molecular Mechanics force field, thus allowing mutual polarization effects in the calculations of the excitonic properties. The investigation is performed both on the crystal structure and on structures generated by a μs long classical molecular dynamics simulation of the complex within a solvated membrane. The results show that this integrated approach not only provides a good description of the excitonic properties and optical spectra without the need for additional refinements of the excitonic parameters, but it also allows an atomistic investigation of the relative importance of electronic, structural and environment effects in determining the optical spectra

    A different perspective for nonphotochemical quenching in plant antenna complexes

    Get PDF
    Light-harvesting complexes of plants exert a dual function of light-harvesting (LH) and photoprotection through processes collectively called nonphotochemical quenching (NPQ). While LH processes are relatively well characterized, those involved in NPQ are less understood. Here, we characterize the quenching mechanisms of CP29, a minor LHC of plants, through the integration of two complementary enhanced-sampling techniques, dimensionality reduction schemes, electronic calculations and the analysis of cryo-EM data in the light of the predicted conformational ensemble. Our study reveals that the switch between LH and quenching state is more complex than previously thought. Several conformations of the lumenal side of the protein occur and differently affect the pigments’ relative geometries and interactions. Moreover, we show that a quenching mechanism localized on a single chlorophyll-carotenoid pair is not sufficient but many chlorophylls are simultaneously involved. In such a diffuse mechanism, short-range interactions between each carotenoid and different chlorophylls combined with a protein-mediated tuning of the carotenoid excitation energies have to be considered in addition to the commonly suggested Coulomb interactions

    Structure of the stress-related LHCSR1 complex determined by an integrated computational strategy

    Get PDF
    Light-harvesting complexes (LHCs) are pigment-protein complexes whose main function is to capture sunlight and transfer the energy to reaction centers of photosystems. In response to varying light conditions, LH complexes also play photoregulation and photoprotection roles. In algae and mosses, a sub-family of LHCs, light-harvesting complex stress-related (LHCSR), is responsible for photoprotective quenching. Despite their functional and evolutionary importance, no direct structural information on LHCSRs is available that can explain their unique properties. In this work, we propose a structural model of LHCSR1 from the moss P. patens, obtained through an integrated computational strategy that combines homology modeling, molecular dynamics, and multiscale quantum chemical calculations. The model is validated by reproducing the spectral properties of LHCSR1. Our model reveals the structural specificity of LHCSR1, as compared with the CP29 LH complex, and poses the basis for understanding photoprotective quenching in mosses

    Ultrafast Transient Infrared Spectroscopy of Photoreceptors with Polarizable QM/MM Dynamics

    Get PDF
    Ultrafast transient infrared (TRIR) spectroscopy is widely used to measure the excitation-induced structural changes of protein-bound chromophores. Here, we design a novel and general strategy to compute TRIR spectra of photoreceptors by combining μs-long MM molecular dynamics with ps-long QM/AMOEBA Born-Oppenheimer molecular dynamics (BOMD) trajectories for both ground and excited electronic states. As a proof of concept, the strategy is here applied to AppA, a blue-light-utilizing flavin (BLUF) protein, found in bacteria. We first analyzed the short-time evolution of the embedded flavin upon excitation revealing that its dynamic Stokes shift is ultrafast and mainly driven by the internal reorganization of the chromophore. A different normal-mode representation was needed to describe ground- and excited-state IR spectra. In this way, we could assign all of the bands observed in the measured transient spectrum. In particular, we could characterize the flavin isoalloxazine-ring region of the spectrum, for which a full and clear description was missing

    A different perspective for nonphotochemical quenching in plant antenna complexes

    Get PDF
    Light-harvesting complexes of plants exert a dual function of light-harvesting (LH) and photoprotection through processes collectively called nonphotochemical quenching (NPQ). While LH processes are relatively well characterized, those involved in NPQ are less understood. Here, we characterize the quenching mechanisms of CP29, a minor LHC of plants, through the integration of two complementary enhanced-sampling techniques, dimensionality reduction schemes, electronic calculations and the analysis of cryo-EM data in the light of the predicted conformational ensemble. Our study reveals that the switch between LH and quenching state is more complex than previously thought. Several conformations of the lumenal side of the protein occur and differently affect the pigments’ relative geometries and interactions. Moreover, we show that a quenching mechanism localized on a single chlorophyll-carotenoid pair is not sufficient but many chlorophylls are simultaneously involved. In such a diffuse mechanism, short-range interactions between each carotenoid and different chlorophylls combined with a protein-mediated tuning of the carotenoid excitation energies have to be considered in addition to the commonly suggested Coulomb interactions

    pH-Dependent Capping Interactions Induce Large-Scale Structural Transitions in i-Motifs

    Get PDF
    We study here a DNA oligonucleotide having the ability to form two different i-motif structures whose relative stability depends on pH and temperature. The major species at neutral pH is stabilized by two C:C+ base pairs capped by two minor groove G:C:G:C tetrads. The high pH and thermal stability of this structure are mainly due to the favorable effect of the minor groove tetrads on their adjacent positively charged C:C+ base pairs. At pH 5, we observe a more elongated i-motif structure consisting of four C:C+ base pairs capped by two G:T:G:T tetrads. Molecular dynamics calculations show that the conformational transition between the two structures is driven by the protonation state of key cytosines. In spite of large conformational differences, the transition between the acidic and neutral structures can occur without unfolding of the i-motif. These results represent the first case of a conformational switch between two different i-motif structures and illustrate the dramatic pH-dependent plasticity of this fascinating DNA motif

    Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants

    Get PDF
    The photosynthetic apparatus of higher plants can dissipate excess excitation energy during high light exposure, by deactivating excited chlorophylls through a mechanism called nonphotochemical quenching (NPQ). However, the precise molecular details of quenching and the mechanism regulating the quenching level are still not completely understood. Focusing on the major light-harvesting complex LHCII of Photosystem II, we show that a charge transfer state involving Lutein can efficiently quench chlorophyll excitation, and reduce the excitation lifetime of LHCII to the levels measured in the deeply quenched LHCII aggregates. Through a combination of molecular dynamics simulations, multiscale quantum chemical calculations, and kinetic modeling, we demonstrate that the quenching level can be finely tuned by the protein, by regulating the energy of the charge transfer state. Our results suggest that a limited conformational rearrangement of the protein scaffold could act as a molecular switch to activate or deactivate the quenching mechanism.FWN – Publicaties zonder aanstelling Universiteit Leide

    Unravelling the ultrafast dynamics of a N-BODIPY compound

    Get PDF
    Although the photophysics of BODIPY compounds has been widely investigated in the last few years, their analogues N-BODIPY, with nitrogen substitution at the boron center, did not receive comparable attention. In this work we report the synthesis and photochemical characterization of a substituted N-BODIPY compound, by means of a combined theoretical and spectroscopic approach. Compared to a standard BODIPY, the compound under investigation presents a lower fluorescence quantum yield (QY) in the visible region. The excited state relaxation dynamics of the dye was studied in different solvents, showing further fluorescence quenching in polar solvents, and excited state decay rates strongly dependent on the environment polarity. The role of the pendant moieties and the involvement of charge transfer states in the excited state dynamics was experimentally addressed by transient absorption spectroscopy, and further analyzed with TD-DFT calculations, which allowed precise assignment of the transient signals to the correspondent electronic configuration. The complete picture of the N-BODIPY behavior shows the presence of both charge transfer and localized states, influencing the observed photophysics to different amounts, depending on the excitation conditions and the surrounding environment

    Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants

    Get PDF
    V.B. and C.D.P.D. acknowledge the support from the Leverhulme Trust RPG-2015-337. This research utilized Queen Mary’s MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. W.P.B acknowledges support from the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC0001035 for initial development of the TDC calculation code, as well as support from Army Research Office (ARO-MURI) Award W911NF1210420 for further development

    Modeling the absorption lineshape of embedded systems from molecular dynamics: A tutorial review

    No full text
    In this tutorial review, we focus on a multiscale method to compute the electronic absorption line shape of molecular dyes embedded in a biological environment. To treat the coupling of the electronic excitations with the nuclear degrees of freedom of the system, we use the spectral density (SD) of the exciton-phonon coupling computed from a Born-Oppenheimer molecular dynamics, which takes into account the effect of the biological environment on the dye's nuclear and electronic degrees of freedom. The theoretical basis of the approach is given, as well as a comprehensive description of the computational protocol for the extraction of the energy gap autocorrelation function evaluating the electronic excitation along the classical trajectory. Furthermore a benchmark application from a recently published study is presented as an example of how the derived SD can be used in computational spectroscopy to accurately simulate the absorption lineshape, including both vibronic and temperature effects
    corecore