1,266 research outputs found

    Spiral-bevel geometry and gear train precision

    Get PDF
    A new aproach to the solution of determination of surface principal curvatures and directions is proposed. Direct relationships between the principal curvatures and directions of the tool surface and those of the principal curvatures and directions of generated gear surface are obtained. The principal curvatures and directions of geartooth surface are obtained without using the complicated equations of these surfaces. A general theory of the train kinematical errors exerted by manufacturing and assembly errors is discussed. Two methods for the determination of the train kinematical errors can be worked out: (1) with aid of a computer, and (2) with a approximate method. Results from noise and vibration measurement conducted on a helicopter transmission are used to illustrate the principals contained in the theory of kinematic errors

    A basis for the analysis of surface geometry of spiral bevel gears

    Get PDF
    Geometrical procedures helpful in the fundamental studies of the surface geometry of spiral bevel gears are summarized. These procedures are based upon: (1) fundamental gear geometry and kinematics as exposited by Buckingham, et al; (2) formulas developed from differential geometry; and (3) geometrical concepts developed in recent papers and reports on spiral bevel gear surface geometry. Procedures which characterize the geometry so that the surface parametric equations, the principal radii of curvature, and the meshing kinematics are systematically determined are emphasized. Initially, the focus in on theoretical, logarithmic spiral bevel gears as defined by Buckingham. The gears, however, are difficult to fabricate and are sometimes considered to be too straight. Circular-cut spiral bevel gears are an alternative to this. Surface characteristics of crown circular cut gears are analyzed

    Special cases of friction and applications

    Get PDF
    Two techniques for reducing friction forces are presented. The techniques are applied to the generalized problem of reducing the friction between kinematic pairs which connect a moveable link to a frame. The basic principles are: (1) Let the moveable link be supported by two bearings where the relative velocities of the link with respect to each bearing are of opposite directions. Thus the resultant force (torque) of friction acting on the link due to the bearings is approximately zero. Then, additional perturbation of motion parallel to the main motion of the moveable link will require only a very small force; (2) Let the perturbation in motion be perpendicular to the main motion. Equations are developed which explain these two methods. The results are discussed in relation to friction in geared couplings, gyroscope gimbal bearings and a rotary conveyor system. Design examples are presented

    Ideal spiral bevel gears: A new approach to surface geometry

    Get PDF
    The fundamental geometrical characteristics of spiral bevel gear tooth surfaces are discussed. The parametric representation of an ideal spiral bevel tooth is developed based on the elements of involute geometry, differential geometry, and fundamental gearing kinematics. A foundation is provided for the study of nonideal gears and the effects of deviations from ideal geometry on the contact stresses, lubrication, wear, fatigue life, and gearing kinematics

    Surface geometry of circular cut spiral bevel gears

    Get PDF
    The tooth surface principal radii of curvature of crown (flat) gears were determined. Specific results are presented for involute, straight, and hyperbolic cutter profiles. It is shown that the geometry of circular cut spiral bevel gears is somewhat simpler than a theoretical logarithmic spiral bevel gear

    Schizotypy and facial emotion processing

    Get PDF
    The ability to accurately interpret facial emotion is crucial to social being and our capacity to correctly interpret threat-related expressions has obvious adaptive value. Healthy individuals appear to process facial emotions rapidly, accurately and effortlessly, while individuals with schizophrenia often present with marked impairment in emotion processing. The hypothesis of continuity between schizophrenia and normal behaviour suggests that the signs and symptoms of the disorder also occur to varying, lesser degrees in the general population. This thesis presents a series of studies that explore the limits of facial emotion processing in healthy individuals, and its relationship with schizotypal personality traits. The first paper describes a set of three studies that use eye tracking techniques to explore the limits of rapid emotion processing. It is shown that we can quickly orient attention towards emotional faces even when the faces are task-irrelevant, presented for very brief intervals, and located well into peripheral vision. The remaining studies explore whether high schizotypes have similarities to individuals with schizophrenia in the way that they process facial emotion. High schizotypes were significantly less accurate at discriminating facial emotions and significantly more likely to misperceive neutral faces as angry, offering support for continuum models of visual hallucinatory experiences. A further study revealed that high relative to low schizoptypes feel as though they are exposed to angry faces for longer. It is argued that this experience itself may serve to maintain hypervigilance to social threat. Finally, laterality biases during face perception were explored. Contrary to the predictions of continuum models of schizophrenia, high schizotypes had an increased left side / right hemisphere bias for face processing. In summary, the thesis offers partial support for the hypothesis of continuity between the impairments in emotion discrimination observed in individuals with schizophrenia, and normal, healthy variation in facial emotion processing

    Tooth profile analysiis of circular-cut, spiral-bevel gears

    Get PDF
    An analysis of tooth profile changes in the transverse plane of circular-cut, spiral-bevel crown gears is presented. The analysis assumes a straight-line profile in the mid-transverse plane. The profile variation along the centerline is determined by using expressions for the variation of the spiral angle along the tooth centerline, together with the profile description at the mid-transverse plane. It is shown that the tooth surface is a hyperboloid and that significant variations in the pressure angle are possible

    Computer-aided design of bevel gear tooth surfaces

    Get PDF
    This paper presents a computer-aided design procedure for generating bevel gears. The development is based on examining a perfectly plastic, cone-shaped gear blank rolling over a cutting tooth on a plane crown rack. The resulting impression on the plastic gear blank is the envelope of the cutting tooth. This impression and envelope thus form a conjugate tooth surface. Equations are presented for the locus of points on the tooth surface. The same procedures are then extended to simulate the generation of a spiral bevel gear. The corresponding governing equations are presented

    A finite element stress analysis of spur gears including fillet radii and rim thickness effects

    Get PDF
    Spur gear stress analysis results are presented for a variety of loading conditions, support conditions, fillet radii, and rim thickness. These results are obtained using the SAP IV finite-element code. The maximum stresses, occurring at the root surface, substantially increase with decreasing rim thickness for partially supported rims (that is, with loose-fitting hubs). For fully supported rims (that is, with tight-fitting hubs), the root surface stresses slightly decrease with decreasing rim thickness. The fillet radius is found to have a significant effect upon the maximum stresses at the root surface. These stresses increase with increasing fillet radius. The fillet radius has little effect upon the internal root section stresses

    On dynamic loads in parallel shaft transmissions. 2: Parameter study

    Get PDF
    Solutions to the governing equations of a spur gear transmission model, developed in NASA TM-100180 (AVSCOM TM-87-C-2), are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also. it is found that the applied load and shaft inertia have little effect on the dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect on dynamic loading; the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness the higher the rotating speed required for dynamic response
    • …
    corecore