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ABSTRACT
This paper discusses the fundamental geometrical characteristics of
spiral bevel gear tooth surfaces, The parametric representation of an
ideal spiral bevel tooth is developed. The development is based on the
elements of involute geometry, differential geometry, and fundamental
gearing kinematics. A foundation is provided for the study of nonideal

gears and the effects of deviations from ideal geometry on the contact

stresses, lubrication, wear, fatigue life, and gearing kinematics.

NOTATION
AA! points on a circular disk (Figs. 2 to 4)
a logarithmic spiral constant
B,B' points on a circular disk (Fig. 4)
b position vector to a typical point on the gear tooth
surface
C involute generating circle (Fig. 1)
det gij determinant of gij
g (i=1,2) base vectors tangent to the gear tooth surface
g det gij

*Member -ASME.
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rear tooth surface metric tensor
inverse tensor of gij
det h
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surface fundamentol vectors (Bqg. (12))

second fundameatal tensor (Eq. (13))

involute curve “Figs. L and 6)

mean curvature

Gaussian curvature

logarithmic spiral constant

mutually perpendicular unit vestors (Figs. 6, 7, and 9)

mutually perpendicular unit vectors (Figs., 7 to 9)

a unit vector parallel to Q0P (Fig. 9)

a unit vector normal to the gear tooth surface

disk center (Figs, 2 and 4) and base conc apex (Figs. 6 to 8)

center of involute generating circle (Fig. 1) and back cone
apex (Figs. 6, 8, and 9)

center of base cone/back cone intersection circle
(Figs, 2, 6, and 9)

a typical point on an involute curve (Fig. 1) and the gear
tooth surface

point of intersection of line segment 0'P and the base
cone/back cone interscction (Figs. 1 and 9)

base point of involute curve (Fig. 1) and typical point

on the base cone/gear tooth intersection (Pigs. 6 to 9




R involute circle radius (Fig. 1) and back cone element

length (Figs. 6 and 8)

Rmax’Rmin maximum and minimum gear tooth surface radii of curvature

r disk radius (Fig. 2) and base cone element distance
(Figs. 3, 6, 8)

ry radius of base cone/back cone intersection cirele (Fig. 2Z)

S a general surface

T tangent to Iinvolute generating circle (Fig, 1)

ul,u2 surface parameters

X length of line segment O'P (Fig. 1)

Q@ base cone half central angle (Figs. 2, 3, 6, and 8)

®, back cone half central angle (Figs. 6, 8, and 9)

) involute generating angle (Fig. 1)

T complement to the spiral angle (Fig. 5)

] cut out sector angle (Fig, 2)

9 invcelute generating angle (Fig. 1) and central disk angle
(Fig. 4)

@ central angle in the base of a cone from a spindled disk
(Fig. 4) and involute angle in the base-cone/back-cone
intersection (Fig. 9)

g spiral anple (Fig. 5)

3 polar angle

(: projected polar angle (Figs. 7 and 9)
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INTRODUCTION

Recently, there has been renewed intercst in the efficiency, reli-
ability, and life of gearing and power transmission systems - particularly v
those used in helicopters and other aircraft, This interest is due in
part to the recent concern about quality control and the safety of air-
craft parts together with an increased emphasis on energy conservabtion,
Beyond this, however, there is a continual interest in understanding the
basic phenomena of lubrication, suvface fatigue, and wear which direetly
affect the reliability, life and efficiency of mechanical components in
transmission systems. Of particular interest is the role of spiral bevel
gear tooth surface geometry and how it affects the performance and life
of the transmission,

The geometrical characteristics and parameters of spiral gears have
been documented for some time by the American Gear Manufacturer's Associa-
tion and others {1-11)."" However, most of this documentation is not
immediately applicable as an analytical basis for using some of the
modern approaches to surface geometry - particularly, computer analyscs
which could be very help® -1 in studying these widely uscd gears. Also,
much of the documentation on spiral bevel gears pertains to circular-cut
as opposed to true-spiral-cut gears. Thercfore, the objective of this
paper, is to provide an exposition on a fundamental approach and analysis
of the spiral bevel gear surface geometry., The cmphasis is upon charac-
terizing the geometry so that the fundamental quantities and relations
such as surface parametric equations, radii of curvature and meshing

kinematics can be systematically determined,

**Numbers in brackets refer to references at the end of the paper.
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The balance of the paper is divided into four scctions with the
following secetion providing some preliminary background concepts which
will be uscful in the sequel, The next section is a description of the
ideal spiral bevel gear tooth ftself, ‘This is followed by a detailed
analytical description of the surface geometry of this ideal gear. The
final section presents a discussicn of the application and potential for
further development of the analysis.

PRELIMINARY CONSIDERATIONS
Involute Geometry

Spiral bevel gears (and also hypoid gears) could be considered to
be at the top of a hierarchy of gears beginning with spur gears and then
to helical gears, then to straight bevel gears and skewed bavel gears,
and finally to spiral bevel gears. 1In each of these gears a tooth geome-
try can be developed by generalizing the involute geometry commonly asso-
clated with spur gears. Therefore, for notational and other puxrposes it
will be helpful to byiefly restate some of the fundamentals of involute
curve geometry,

Consider the involute curve I, shown in Fig. 1, which for simplicity
may be considered as the curve traced by the end of a cord being unwrapped
around the circle C. 0' dis the center of ¢ and P is a typical point
on I. Q 4is at the base of T. The line scgments QO' and PO' then
form an angle ¢ as shown, T is the tangent point of the tangential
segment PT. The segments TO' and QO' then form the angle g,

Finally, P' is the intersection point of O0'P and C.

p
i
|
|
i
i




f

If R 1is the civele radius, it is immediately seen that the radius
of curvature ,» of I at P 1is
g R‘ﬁ (l)

Henee, in terms of 2, 1t is casily secen that

. 172
® = R(L + ) )
and that
S tan-lﬁ (3)

where x 4s the length of the line segment 0'P,  (Bq. (2) follows immedi-
ately Eq. (1) and the Pythagorean identicy and Eq. (3) fs obtained by
observing that tan(g - §) = p/R.)

Spindling a Disk into a Cone

Just ag a spur gear can be generated by “wrapping' a basic rack into
a cirele, so also a bevel gear can be generated by spindling a “erown gear!
(a vireular disk or face gear, sometimes called a "evown rack') into a conc,
Therefore, it is uselul to review the geometrical aspects of spindling a
disk into a cone,

Consider the disk with radius r with a cut-out sector with angle o
as shown in Fig. 2, If points A and A' arc brought together, the disk
forms a cone as shown in Fig. 3. Letting ), be the radius at the base
of the cone, it is immediately seen that

2rr, = (25 - &)r (4)

0
Therefore, Lf v is the half central angle of the cone, o and 6 are
related as

sin «a = ro/r = L o= (8/21) (5)




Finally, consider the disk of Fig., 2 with two points B ond B' on
the cireumference, Then B and B' with O form the angle G ag shown
in Fig., 4(a). After spindling, the top view of the resulting cone ig
shown in Fig. 4(b), where O 1§ on the cone axis at its base. Since the
arcs BB' are of equal lengths in Iigs. 4(a) and (b), the angle & formed

by B, 0, and B' {s then related to @  through the ecquation

e = r0$ (6)
or, by using Eq. (5) as
§ = @/ein u )

Differential Geometry Formulation
Major factors affecting the lubrication, surface fatipgue, contact
stress, wear, and life of gear teeth are the maximum and minimum radii of
curvature of the tooth surface at the point of contact with the meshing
tooth, To oktain the radii of curvature, it is convenient to employ some
relations developed in elementary differential geometry formulations.
Hence, tbese relacions are briefly summarized here,
Suppose a surface § is deseribed by a pair of parameters vy and
u, through the vector parametric equation p = g(ul,uz) where p is the
position vector of a typical point P on S. Then base vectors e (i =1,2)
tangent to § at P are given by
¢ = op/wt (i = 1,2) (8)
A surface metric tensor gij (i,j = 1,2) may then be defined as
By =&yt gy (H=1,2) (9)
Let g be det gij' Then it is casily shown that

&= ’Sl X 02, (10)

Y
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Henee, a uoit vector n normal to & 1s given by
B8y N e/n (in

Next, let the fundamental vectors Qi (1 = 1,2) ne detined as

Qi c nQ/‘ul (1 - 1,2 (12)
Then the gecond tandamental tensor hij (1, - 1,2) is detined as
hij = 'Qi ' gj (i,j= 1,2 (13)
Finally, the Gaussian curvature K and the mean curvature J  are des
fined as
K= h/g (1%
and
J = kﬁg (15)
where b Is det hij and kij ig defined as
kg @ gl% hy, (16)

-1 .
whure gij is the dnverse tensor of “Lj' Regarding notation, repeated
indices vepresent a sum (that is, Lrom 1 to 2) over that index,

The maximum and minimum radii of curvature R ax and Ron are then
e

easily calculated in terms of J and K as

2 1/2:
= 9 - e :
Ruin = 2/ 3% (7 - 4K) ; Q

~a3
L

Rma x’
AN IDEAL SPIRAL BEVEL GEAR TOOTH SURFACE GEOMETRY
A Logarithmic Spiral
The name "spirval-bovel' stems From the fact that if the centerline of
a crown gear tooth follows a logarithmetic spiral, the spiral angle will
be constant along the tooth. That is, the tangent to the tooth centerline

makes a constant angle with the radial lines., ¥Figure 5 illustrates this
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tihiepe %l and vh are the angles between the tooth centerline and the
radial lines at typilcal points P, and Py It s vasily shown F12; that
if the polar form of the tooth centerline equation is ¢ = aoma, a loga=-
ritimic spiral, then \l = aé. That Lls, the spiral angle is constant
along the tooth, This Ls significant since then the complementory angles
" and Ty are also equal and therefore constant alony the tooth. This
means that the tooth profile, which is normal to the roadial direction,
makes a constant angle with the tooth centexline, This, in turn, is
significant since it insures uniform meshing kinematics along the gear
tooth with the mating gear.

The following subsection examines the spindling of a crown gear,
with gear teeth in the shape of logarithmetic spirals, into a cone,

Base Cone Geometry

To develop the geometrical basis of an ideal spiral bevel gearx,
imagine a cworwn gear with an involute tooth profile. (vhe tooth profile
is normal to the radial directicn.) Next, let this gear be spindled into
a cone as described in the foregoing section. The detalls of this can be
seen by considering Fig. 6 whare the "base cone” and a corresponding
orthogonal '"back cone" of a typical gear are shown. In this figure, Q is
a typlcal point on the base cone of a gear tooth, R is the elemental
distance from the back conc apex 0' to the base-cone/back-cone inter-
section, Similarly, v is the elemental distance from the base cone apex
to the base-cone/back-cone intersectlon, « and w, are the hall central
angles of the base and back cones respectively. (mc is the complement
of a.) El’ NZ’ and §3 are mutually perpendicular unit vectors with §3
being parallel to the cone axis, TFigure 6 also shows an exaggerated view
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croan swvolute curve T starting at ) ond bein: wrapped avound the
base eone,  Here, as in Fig. L, R ecorresponds to she vadiug ot the eirele
ob the unwrapping vord which defines the involute, i is, the curve 1o
tormed by unwrapping o covrd about a eirvele of radiun, ¥ and then by
spindling the resulting involite around the baek cone, Finally, in Pig. b,
U is the position vector of @ velative to O and its magnitude is r.
Figure 7 shows a top view of the base=cone/back=cone interscction of
Fig, 6, 9 1is the angle between N

¢;;l

intergsection plane, N!, N', ond N! are mutually perpendicular unit
ul 2 j It p

and the projecetion ol 00 onto the
vegtors with g; volneiding with SK’ Figure 7 also shows the logarithmic
spiral spindled about the base eone.  If the logarithmic spiral is defined
by 1 = uemj as deseribed in 3 preceding subsection, then 5 is related
to J by Eq. (7). That is,
%o 9fsin v (18)
Position Vectors
The surface peometry of a spiral bevel gear tooth is determined once
a position vector to o typleal point P on the tooth surface is known.
Relative to 0O, the base cone apex, such a position vector ceuld take the
form
o= P = 00+ Q0 o+ olp (19)

where the notation is self-delining, By examining Figs., o and 7, it is

readily seen that in terms of Ql’ N,, and Q3, 00 is:
<N r » T ¥
0Q = * gin a cos o gl +rogin tsdin N, - ¥ ocos o Nq (20)

Next, consider Fig., 8 which shows a true view oi the vectors 0Q and

QO'. From this figure, it is immediately seen that R is equal to 1 tan -

and that QOQ' is then given by

7
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!é“' O G 771§ DR T L N’l = 1 ban T N'ﬁ (1)

Fiaally, to detes qe O'Py note that from Fie, ) 0P g be weitton
in th o wple bovm
wp o ox th (22)

where s Is piven by Bq. ") and where N i a it cector parallel to

"

P as shown (o Fig, 9, [} Yoda it veetor pavallel o 0Pt s

l
shown, N, may be written ag
N, cosin o NV ocon o N (21
Ay Y Q'l. (5 ‘

However, NY may be expressad &n terms of N, and N. as
Y1 11 ]

gx o gos (D ‘)gl + sin(d + ﬁ)yq (24)

a
-

whure is projected involute generating apgle. = in related to 4 of
Fig. 1, by Eq. (7). ‘lhat is,
v v/sin o €25)
Henee, Lrom idqgs, (22) to (24)  0'P becomes
O'r = x sin e cnsg& ! 3)&1 1 % sin Y singd i v)mz b s con i N1 ()
Finally, by wing Fys. (19), (20), 1), and (20), P becomes

P { s » -~ "
Lo oxosin o, cos(y + .)yl

+oxosin sin(d + )N, + (x cos ny v osee DN, (27)
By noting that . and o are complementary (hence, sin . ¥ oeos w and

: 1.{,;.’
eos <, = sin ) and that by ¥Bq., (2) x = r(l + ng) Lan <, Hg. (27) may

be rewritten as

g 172 , . R ..
P = (L4 ) sin « vos (/i 4+ ) ﬁ] + (L 4 %) g sin(@ 4+ %) N,

P ) aln g tan = s N (28)



e

Emation (48) coan be shown te be of the torm p p(ul,uz) whopre
nl >3 and u2 Ao This ls fmmediotely seen by vecalling from Bgu, (9
amd (7)) that v and may be written as
r oo exp@m 8 sin ) (21)
and
AR (= Lnn'lm)/coa g (i)
Differentiol Geometry
If BEq. (28) is eonsidered to be of the form p - gﬁ?,n) = g(ul,uz),
then the differential peometry formulas of Hgs. (8) to (17) are direetly
applicable,  For example, 1t is easily shown that the base veetors and

mebtric tensor components arve:

2 1/2 N ~ B L
ey = r(l 4 .27) sinomosin o cos(@ 4 %) = sin(¥ + V) N,
5 /2 NN N
+ vl + ) gin aim sin o« gind 4 ) 4 cos(d t 3) N.
2 1/2 "
+mr tan o (1 4+ <7) sin”. - 1 Ny (31)
4 1/2 ~ N o 4
ey © refl + <) sin « (eos (9 + °) = # sin(@ + Msoee w]ﬁl
. 3 N h .
+ sin(3d + D) 4 s cos(§ + V)see N, + (tan 4)§3 (3
2 2 2,2.,2
B =¥ (L + M)sin™ msin®e + 1)
I 2 /2 2
+ mTrTean"a (1 4+ <) sin"t - 1 {313)
B! s L/2
1y T o Bgp ¢ ehdsin o tm o G om otan oo~ m(l + ) tan - (34)
and
‘ a2
Bon © ’»')"»"2 Lan™. ('3)
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Begina this however, a glance at Eqs. (L1), (12), (10), and (17) shows
that caleulation of the unit normal vector, the second lundamental tensor,
and the radei of curvature, could be quite laborjous and cumbersome,
fence, they are not prosented here, lowever, the expressions of Egs, (L1)
to (17) are in fLdeal form for calculation by one of the symbolic manipula-
tive computer langages (¢.g., FORMAC).
SUMMARY OF RESULTS AND CONCLUSIONS

The forecgoing is a brief exposition and analysis ol the fundamental
geometrical characteristics of an ideal spiral bevel gear, The basis of
the exposition is the assumption of a gear tooth having an involute pro-
file and a centerline which follows a logarithmic spiral. Although such
gears may not be convenient to manufacture and machine, a few conclusions
about them and 'monideal' gears may be immediately deduced: Firsi, it is
clear that uunless the tooth centerline follows a logari hmic spiral, the
inclination of the tooth profile, which engages the mes ing gear, will not
be uniform along the tooth. This could adversely modifv the surface char-
acteristics which in turn could affect the contact strers, lubrication,
and wear of the gear., Next, if a true involute profile is not employed,
conjugate action of involute gearing could be affected, thus inducing
vibrations and erratic kinematics. TFinally, unless the gear tooth is
spindled around the base cone, there could occur excessive sliding at the
lieel and toe of the tooth during meshing - particularly Lf the tooth is
long and is developed by a plane (v.g., circular) cutter.

Beyond this however, the feregoing analysis can provide a basis for

the analysis and comparison of nonideal gears and for estimating the



signifivanve of deviations from an ideal Lorm. Moreover, the aplysis is
developed in a form that is suited Lor modern computer analyses and sym-
bolic manipulator languages.
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Figure 1. - involute geometry.
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Figure 2. - Circular disk with cut out sector,
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Figure 3. - Cone formed from the disk of figure.
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(a) CUT OUT DISK.

B' B
(b) TOP VIEW OF THE CORE.

Figure 4. - Disk with cut out section and top
view of resulting cone,
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Flgure 5. - Radial inclination of the tooth centerline.
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Figure 6. - Base cone and involute spindling around a back cane.
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Figure 7. - Top view of base-cone/back-cone Intersecti
curve of a typical tooth,

on and projected



Figure 8. - True view of vectors 0Q
and Q0',

Figure 9. - Back cone unit vectors.
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