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This paper contains a summary of some geometrical procedures helpful in the fundamental 
studies of the surface geometry of spiral bevel gears. These procedures are based upon 
(1) fundamental gear geometry and kinematics as exposited by Buckingham, et al. (refs. 1 and 2), 
(2) formulas developed from differential geometry, and (3) geometrical concepts developed in recent 
papers and reports (refs. 3 to 5 )  on spiral bevel gear surface geometry. 

Spiral bevel gears are found in virtually every transmission or gear box where power is 
transmitted through intersecting rotating shafts. In the majority of these transmissions, the 
tolerances are moderate, and thus relatively small deviations in geometrical design do not create 
major operating problems. However, in many cases-particularly in aircraft and helicopter 
transmissions-careful compliance with narrow tolerances is essential for safe and reliable 
performance of the gears. But, even with adherence to these narrow tolerances, the performance of 
the gears is, at times, unsatisfactory. This dissatisfaction has stimulated a desire for improvement in 
design, fabrication, and maintenance of the gears. 

To attain these desired improvements, it is necessary to have a better understanding of the 
fundamental aspects of the kinematics, lubrication, stresses, and wear of the gears. Since gear surface 
geometry plays a critical role in each of these phenomena, there has recently been renewed interest by 
a number of investigators in studying the surface geometry. In this paper a review is presented of 
some recently proposed procedures for studying the surface geometry. 

The emphasis of the paper is on those procedures which characterize the geometry so that the 
surface parametric equations, the principal radii of curvature, and the meshing kinematics are 
systematically determined. Initially, the focus is on theoretical, “logarithmic” spiral bevel gears as 
defined by Buckingham (ref. 1). These gears, however, are difficult to fabricate and are sometimes 
considered to be too “straight.” Hence, as an alternative, most manufacturers and users have 
employed “circular-cut” spiral bevel gears. Therefore, the second focus of the paper is the analysis 
of surface characteristics of crown circular-cut gears. 

Symbols 
A,A ’ 
a 
B,B’ 
C 

ei ( i  = 1,2) 

g 

H, V 
hi (i = 1,2) 

Z 
J 

gij (i,j = 1,2) 

hij (i,j = 1,2) 

points on a circular disk (figs. 2 to 4) 
logarithmic spiral constant 
points on a circular disk (fig. 4) 
involute generating circle (fig. 1); a curve defining a surface of revolution; cutter cen- 

surface base vectors (eq. (8)) 
determinant of gq 
metric tensor coefficients 
coordinates of C (fig. 16) 
fundamental vector defined by eq. (12) 
second fundamental tensor defined by eq. (13) 
involute curve (figs. 1 and 8) 
mean curvature 

ter (figs. 14 and 16) 
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gaussian curvature 
logarithmic spiral constant 
normal line to a surface of revolution 
mutually perpendicular unit vectors (figs. 8, 9, and 11) 
mutually perpendicular unit vectors (figs. 9 to 11) 
unit vector parallel to OP (fig. 11) 
a unit vector normal to a surface 
defined in fig. 12 
radial unit vector (fig. 12) 
defined in fig. 12 
unit vectors parallel to XYZ 
origin of XYZ axis system (See also fig. 12.) 
center of involute generating circle (figs. 1 and 12); back cone apex (figs. 8 to 10) 
center of base-cone-back-cone intersection circle (figs. 2, 8, and 1 I )  
typical point on a surface 
point of intersection of line segment 0 'P and base-cone-back-cone intersection 

position vector to a typical point on surface 
midpoint of crown gear tooth 
base point of involute curve (fig. 1) and typical point on base-cone-gear-tooth 

involute circle radius (fig. 1) and back-cone element length (figs. 8 and 10); radial 

distance CP, (fig. 16); cutter radius (fig. 15) 
principal surface radii of curvature 
disk radius (fig. 2) and back-cone element distance (figs. 3, 6, and 8); radius of a 

radius of base-cone-back-cone intersection circle (fig. 2) 
general surface 
tangent line to C, tangent point 
surface defining parameters 
mutually perpendicular coordinate-axis system 
mutually perpendicular coordinate-axis system (fig. 16) 
length of line segment O'P (fig. 1) 
coordinates of P relative to X ,  Y,Z 
coordinates relative to X,  Y,Z 
base-cone half central angle (figs. 2, 3, 8, and 10) 
back-cone half central angle (figs. 6, 10, and 11) 

involute generating angle (fig. 1) 
complement to the spiral angle (fig. 7) 
cutout sector angle (fig. 2) 
angle between R and X axis; pressure angle (figs. 15 and 16); polar angle 
projected polar angle (figs. 9 and 11) 
involute generating angle (fig. 1) and central disk angle (fig. 4); angle between N 

central angle in the base of a cone from a spindled disk (fig. 4) and involute angle in 

inclination angle of T (fig. 5) ;  spiral angle (figs. 9 and 16) 

(figs. 1 and 11) 

intersection (figs. 8 to 11, also fig. 12.) 

line (fig. 8) 

surface of revolution; radial distance 

and the Z axis (fig. 5);  angle between nTand the Z axis (figs. 12 and 13) 

the base-cone-back-cone intersection (fig. 1 1) 

318 



Preliminary Considerations 

Involute Geometry 

Consider the involute curve I (fig. l), which for simplicity may be considered as the curve traced 
by the end of a cord being unwrapped around circle C.  In the figure 0' is the center of C, P is a 
typical point on I ,  and Q is at the base of Z. The line segments QO' and PO' then form an angle cp as 

Geometrical characteristics of spiral bevel gears have been documented by the American Gear 
Manufacturer's Association and others (refs. 1, 2, and 6 to 12). From this documentation it is seen 
that spiral bevel gears (and, hence, also hypoid gears) could be considered to be at the top of a 
hierarchy of gears beginning with spur gears and then helical gears, straight bevel and skewed bevel 
gears, and finally to spiral bevel gears. In each of these gears a tooth geometry can be developed by 
generalizing the involute geometry commonly associated with spur gears. Therefore, for notational 
and other purposes, it will be helpful to briefly restate some of the fundamentals of involute curve 
geometry. 

Hence, in terms of 0, it is easily seen that 

and that 

cp = 0 - tan-10 (3) 

where x is the length of the line segment O'P. (Eq. (2) follows immediately eq. (l), and the 
Pythagorean identity and eq. (3) are obtained by observing that tan (P - (o) = p / R . )  

P 

Figure 1. - Involute geometry. Figure 2 .  - Circular disk w i t h  cut o u t  sector. 
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Spindling a Disk into a Cone 

Just as a spur can be generated by “wrapping” a basic rack into a circle, so also a bevel gear can 
be generated by spindling a “crown gear” (a circular disk or face gear, sometimes called a “crown 
rack”) into a cone. Therefore, it is useful to review the geometrical aspects of spindling a disk into a 
cone. 

Consider the disk with radius r with a cutout sector with angle (p as shown in figure 2.  If points A 
and A ’ are brought together, the disk forms a cone as shown in figure 3. When ro is the radius at the 
base of the cone, it is immediately seen that 

27rro = (27r - 6)r (4) 

Therefore, if a is the half central angle of the cone, a and 6 are related as 

Finally, consider the disk of figure 2 with two points B and B’ on the circumference. Then B and 
B’ with 0 form the angle (p as shown in figure 4(a). After spindling, the top view of the resulting cone 
is shown in figure 4(b), where 0 is on the cone axis at its base. Since the arcs BB’ are of equal lengths 
in figure 4, the angle (1, formed by B, d, and B’ is then related to (p through the equation 

Figure 3. - Cone formed from disk o f  figure. 

Cl CUT OUT DISK (b) TOP VlCW OF THE CONE. 

Figure 4. - Disk with cut out section and top view o f  resulting cone. 
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or, by using equation ( 5 )  as 

- ( P  cp= - 
sin CY 

(7) 

Differential Geometry Formulation 

Major factors affecting the lubrication, surface fatigue, contact stress, wear, and life of gear 
teeth are the maximum and minimum radii of curvature of the tooth surface at the point of contact 
with the meshing tooth. To obtain the radii of curvature, it is convenient to employ some relations 
developed in elementary differential geometry formulations. These relations are briefly summarized 
here. 

Suppose a surface S is described by a pair of parameters u1 and u2 through the vector parametric 
equation P = P(u1,u2), where P is the position vector of a typical point P on S. Then base vectors 
ei (i = 1,2) tangent to S at P are given by 

( i =  1,2) 

A surface metric tensor go (i , j= 1,2) may then be defined as 

go = ei-ej (i , j= 1,2) 

Let g be det go. Then it is easily shown that 

G= le1 xe21 

Hence, a unit vector n normal to S is given by 

elXe2 - e1xe2 n=--- 
le1xe21 G 

Next, let the fundamental vectors h#= 1,2) be defined as 

(i = 1,2) 

Then the second fundamental tensor hu (i,j= 1,2) is defined as 

h .  .- -h..e. 

Finally, the Gaussian curvature K and the mean curvature J are defined as 

(i, j = 1,2) 1,J- I J (13) 

and 

where h is det ho and ko is defined as 

where g-' is the inverse tensor of go. Regarding notation, repeated indices represent a sum (Le., from 
1 to 2) over that index. 
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The principal normal radii of curvature R1 and R2 are then easily calculated in terms of Jand  K 
as 

2 
[J*(J2-4K)”] 

R1, R2= 

Surfaces of Revolution 

The tooth surface of a circular cut spiral bevel crown gear is a “surface of revolution;” that is, it 
can be developed by rotating a curve, in the shape of the cutter profile, about a fixed axis. Consider, 
for example, the curve C shown in figure 5 .  If Cis rotated about the Z axis, it generates a surface of 
revolution S, a portion of which can be considered as the surface of a circular cut spiral bevel crown 
gear. Let C be defined by the expression 

Z =f ( r )  (18) 

where r is the distance from the Z axis to a typical point P on C. Let cp be the angle between the Z axis 
and the normal line N of S at P. Then r and cp are dependent on each other; that is, 

Let $ be the inclination angle of the tangent line Tto  Ca t  P a s  shown in figure 5 .  Then $, cp, and the 
slope of Tare related as follows: 

X 

Figure 5. - A surface o f  revolution about the Z axis. 
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- _ - _  dz - df - -tan r ~ . =  +tan(?r-G)= -tan cp 
dr dr 

Consider a top view of S as shown in figure 6. In this view P i s  seen to lie on a circle of radius t, and 
on a radial line R, which makes an angle 8 with the X axis. Then the position vector P of P relative to 
0, a fixed point on the 2 axis (fig. 5 . ) ,  is 

P=znz+rnr=rnr+f(r)n, (21) 

where n, and n, are unit vectors parallel to R and the Z axis. Hence, in terms of n,, nu, and nz, unit 
vectors parallel to the X, and Z axes, P become 

P = r  cos 8 n,+r sin 8 ny+f(r)n, (22) 

Since r = r(cp), P is a function of cp and 8. Therefore, it is convenient to let cp and 8 be the parameters 
u1 and u2 defining S in the parametric representation P = P(ul,u2) of the foregoing differential 
geometry formulas. 

From equation (S), the surface base vectors el and e2 become 

and 

e2=ee= - r  sin 8 n,+r cos 8 ny 

Y 

Figure 6. - Top view o f  surface o f  revolution. 
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Then, from equation (9) the metric tensor components become 

and 

822 = gee = r2 (27) 
where equation (20) has been used to simplify the expressions. Hence, from equation (1 1) the unit 
vector n normal to S becomes 

n=sin (o cos 0 n,+sin (o sin 0 n,,+cos (a nz 

The fundamental vectors hXi= p,8) and the second fundamental tensor h&j = p,8) are then 

h l = h , =  - =cos (o cos 0 n,+cos (o sin 8 n,,-sin (o nz an 
a(o 

an 
ae hz=h,g= - = -sin (o sin 8 n,+sin (o cos 8 n,, 

hl l=h, ,=  - ( 2 ) s e c  (o 

h22= he,= - r  sin (o 

From equations (14) and (15) the Gaussian curvature and the mean curvature become 

sin (o cos (o 

r dr/d(o K =  

and 

J = - (  m r  

Finally, using equation (17), the principal surface radii of curvature become 

and 

These expressions may be expressed in terms off by using equation (20); that is, since 

(o= - t a n - l ( g )  

324 



then (dp/dr) becomes 

d p  - - (d2f/dr2) 
dr 1 +(df/dr)2 
- _  

and hence, R1 and R2 become 

11 + (df/drPl R1= 

and 

(d2f/dr2) cos [tan - 1 (df/dr)] 

I f 
R2= 1 sin[ tan-l(df/dr)l 

(39) 

(40) 

Theoretical Spiral Bevel Gear Tooth Surface Geometry 
A Logarithmic Spiral 

The name “spiral bevel” stems from the fact that, if the centerline of a crown gear tooth follows 
a logarithmetic spiral, the spiral angle will be constant along the tooth; that is, the tangent to the 
tooth centerline makes a constant angle with the radial lines. Figure 7 illustrates this where $1 and $2 
are the angles between the tooth centerline and the radial lines at typical points P1 and P2. It is easily 
shown (ref. 13) that if the polar form of the tooth centerline equation is r =  acme, a logarithmic spiral, 
then $1 = $2; that is, the spiral angle is constant along the tooth. This is significant since then the 
complementary angles y1 and y2 are also equal and therefore constant along the tooth. This means 
that the tooth profile, which is normal to the radial direction, makes a constant angle with the tooth 

TOOTH 

Figure 7. - Radial inclination of the tooth Figure 8. - Base cone involute spindling around a 
centerline. back cone. 
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centerline. This, in turn, is significant since it insures uniform meshing kinematics along the gear 
tooth with the mating gear. 

The next section examines the spindling of a crown gear, with gear teeth in the shape of 
logarithmic spirals, into a cone. 

Base Cone Geometry 

To develop the geometrical basis of an ideal spiral bevel gear, imagine a crown gear with an 
involute tooth profile. (The tooth profile is normal to the radial direction.) Next, let this gear be 
spindled into a cone as described in the foregoing section. The details of this can be seen by 
considering figure 8 where the base cone and a corresponding orthogonal back cone of a typical gear 
are shown. In this figure, Q is a typical point on the base cone of a gear tooth; R is the elemental 
distance from the back cone apex 0‘ to the base-cone-back-cone intersection; r is the elemental 
distance from the base-cone apex to the base-cone-back-cone intersection; a and aC are the half 
central angles of the base and back cones, respectively (a, is the complement of a); and N1, N2, and 
N3 are mutually perpendicular unit vectors, with N3 being parallel to the cone axis. Figure 8 also 
shows an exaggerated view of an involute curve I starting at Q and being wrapped around the base 
cone. Here, as in figure 1, R corresponds to the radius of the circle of the unwrapping cord which 
defines the involute; that is, the curve is formed by unwrapping a cord about a circle of radius R and 
then by spindling the resulting involute around the back cone. Finally, in figure 8 OQ is the position 
vector of 0 relative to 0 and its magnitude is r.  

Figure 9 shows a top view of the basecone-back-cone intersection of figure 8. Therein, 0 is the 
angle between N1 and the projection of OQ onto the intersection plane, and N;, Ni, and N; are 
mutually perpendicular unit vectors, with N; coinciding with N3. Figure 9 also shows the logarithmic 
spiral spindled about the base cone. If the logarithmic spiral is defined by r =  acme, as described in the 
preceding section, then 6 is related to 8 by equation (7); that is, 

- e  e= - 
sin a 

Position Vectors 

The surface geometry of a spiral bevel gear tooth is determined once a position vector to a 
typical point P on the tooth surface is known. Relative to 0, the base cone apex, such a position 
vector could take the form 

!Z 1 _I 

Figure 9. - Top view o f  base-cone - back-cone 
intersection and curve o f  a typical tooth. Figure 10. - True view o f  vectors OQ and QO’. 

326 



P = OP = OQ + QO’ + O ’ P  (43) 

where the notation is self-defining. By examining figures 8 and 9, it is readily seen that in terms of N1, 
N2, and N3, OQ is 

Next, consider figure 10 which shows a true view of the vectors OQ and QO’. From this figure, 
it is immediately seen that R is equal to r tan ct and that QO’ is then given by 

QO'=-rtanacosctN;-rtanasinct Nj (45) 

Finally, to determine O’P, note that from figure 1, O’P can be written in the simple form 

O’P=xN, (46) 

where x is given by equation (2) and where N, is a unit vector parallel to O ’ P  as shown in figure 11. If 
N;is a unit vector parallel to OP’ as shown, N, may be written as 

N=sin ctc N;+cos ctc N3 (47) 

However, Nfmay be expressed in terms of N1 and N2 as 

where (p is the projected involute generating angle and is related to (p of figure 1 by equation (7); that 
is, 

Hence, from equations (46) to (48), O ’ P  becomes 

O ’ P = x  sin ctc cos@+ G)N1 +x sin ctc sin(8+G)N2+x cos ctc N3 

F i g u r e  11. - Back cone u n i t  vectors .  
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Finally, by using equations (43) to (45) and (50), P becomes 

P =x sin a, cos($+ (P)Nl +x sin a, sin($+ (P)N2 + (x cos a,- r sec a)N3 (51) 

By noting that a and a, are complementary (hence, sin a,= cos a and cos a, = sin a) and that by 
equation (2) x=r( l  +02)% tan a, equation (51) may be rewritten as 

P=r([(l  +02)% sin a cos(ff+&]N~ +[(1+@2)” sin a sin($+(P)]N2 

+[(1+@2)% sin a tan a-sec a]N3] (52) 

Equation (52) can be shown to be of the form P=P(ul,u2) where u1 =$ and u2=0. This is 
immediately seen by recalling from equations (3) and (7) that r and 8 may be written as 

r =  a exp(rn8 sin a) (53) 

and 

- 0-tan-1 0 e= cos a (54) 

If equation (28) is considered to be of the form p=p($,P)=p(u1,~2), then the differential 
geometry formulas of equations (8) to (17) are directly applicable. However, a glance at equations 
(1 l) ,  (12), (16), and (17) shows that, beyond the metric tensor components, the calculation of the unit 
normal vector n, the second fundamental tensor hij, and the radii of curvature R1 and R2, could be 
quite laborious and cumbersome. Hence, they are not presented here. But, the expressions of 
equations (11) to (17) are in a form suitable for calculation by one of the symbolic manipulative 
computer languages (e.g., Formac or Macsyma). As such, the foregoing analysis provides a basis for 
a computerized analysis of the surface geometry of the gears. 

Circular-Cut Crown Gear Tooth Surface Geometry 
An Involute Curve 

Although it is not practical to generate a spiral-bevel gear-tooth surface with a rotating cutter in 
the shape of an involute curve, it is nevertheless informative, as a first illustration, to examine the 
surface of revolution formed by an involute curve. 

Consider the involute curve C of figure 12. The radius of curvature p of C at a typical point P is 
simply the length TP. It is easily seen that p is one of the principal radii of curvature of the surface of 
revolution, which is obtained by revolving C about the Z-axis. 

To see this, consider using equations (36) and (37) of the foregoing analysis. These equations 
require knowledge of the radial distance r as a function of the angle. To obtain r(p) let 0 be that 
point on the Z axis that is at the same elevation as 0‘, the center of the circle generating C. Then, r 
may be expressed as 

r = n,.OP (53) 

The vector OP may be written as 

OP = 00’ + 0 ’T + TP (54) 

or 

OP = bn, + an, - acp,nt (55 )  
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where b is the distance 00', u is the circle radius, and cpc is the complement of (p. In terms of n, and 
nz, OP may be written as 

R2= 

Hence, from equation (58), r and dr/dcp become 

b csc cp-u cot cp+a - -cp  (3 ) I  

r=b-ucos  cp+a - -cp sin cp ( 5  ) 
and 

dr 
dcp - = u (  5 cp 

(57) 

Therefore, from equations (36) and (37) the principal radii of curvature of the generated surface of 
revolution are 

and 

/ t -  
Base Circle 

Figure 12. - Involute curve as generator for surface of revolution. 
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An examination of figure 12 shows that these expressions can be interpreted simply as 

and 

Finally, it is interesting to observe that, if the same analysis is carried out for an involute curve 
generated in the opposite direction (as shown in fig. 13) the corresponding surface of revolution has 
the principal radii of curvature: 

and 

These results are, of course, identical to equations (61) and (62). However, in this case, the centers of 
curvature are on opposite sides of the surface, since the Gaussian curvature is negative. 

Straight Line Profile-Normal Plane 

Consider next a rotating gear-tooth cutter with a straight-line profile that forms a gear-tooth 
surface with a straight-line profile in the normal plane as shown in figures 14 and 15. Viewed as a 
surface of revolution, this is a cone. Its defining equation may be expressed as 

Figure 13. - Second involute curve as generator for 
surface of revolution. 

Tooth Curvature 

Plane 

Crown 
Gear 

Transverse 
P1 ane 

1/ 

Cutter Center 

Figure 14. - Top v i e w  showing gear cut ter  centers 
and edge view of normal and transverse planes. 
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z = (r - R,)cot e (65) 

where 8 is the pressure angle (fig. 15) and R, is the cutter radius at the base of the tooth. From this 
expression d d d r  and d2z/dr2 are readily obtained as 

dz - =cot 8=tan (p dr  
and 

d% -=o 
dr2 
where (3 is the complement of 8 as shown in figure 15. Hence, equations (50) and (41) give the 
maximum and minimum surface radii of curvature as 

R,,= Qo 

and 

These results might also have been obtained by recalling that a cone is generated by straight-line 
elements (hence, infinite radius of curvature) and that the minimum radius of curvature is the 
distance QP as shown in figure 15. 

Straight Line Profile-Transverse Plane 

Finally, consider a rotating cutter which generates, for a crown gear, a straight-line meshing 
profile. Specifically, consider figure 16, that shows the pitch plane of a crown gear where 0 is the 
gear center and C (with X, Y coordinates H, v) is the center of the rotating cutter. Let P,,, be the 
midpoint at the base of the gear tooth surface and let IC. be the spiral angle. The transverse plane is 
normal to the X axis at P,,,. Since 0 is the gear center, the X axis is a radial line, and the intersection 
of the transverse plane and the gear tooth surface defines the transverse meshing profile shown in 
figure 17. If 8 is the transverse pressure angle, the equation of the inclined tooth profile is simply 

Figure 15. - True view of normal plane showing crown t oo th  profile. 
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where z and y refer to coordinates along the Z and Y axis and k is defined as cot 8.  Relative to the 2, 
p, and 2 axes of figure 16, equation (70) becomes 

z=z^=kQ+ v) (71) 

In terms of x, y, and z, the profile of the cutter radius can be expressed in general as 

2 =f(r) =Jc(22 + 92) ”3 (72) 

The form off, which defines the tooth surface of revolution, may be determined by observing that 
the intersection of the revolution surface of the cutter with the transverse plane must coincide with 
the tooth profile of figure 17. If R, is the distance between C and P,, then the 2coordinate of P,,, is 
simply R, sin $. Hence, by letting 2 = R ,  sin $ and by matching equations (71) and (72), the 
following relation is obtained: 

f[(R: sin2 $ +92)”] = k Q  + v) 

F= (R: sin2 $ +y2) ” 

jj=(rQ-R: sin2 $)” (75) 

(73) 

Let F be defined as 

(74) 

Then, in terms of F, j j  becomes 

where the negative root is required to be consistent with the coordinate system of figure 16. Hence, by 
equation (73), f is determined as 

~ ( ~ = I C [ V - ( S - R :  sin2 $)”I 
which is the equation of an hyperboloid. 

Cutter Ccnter 

c (M.V) 
X 

Normal Plane 
L( 

\ 

Figure 16. - View o f  crown gear pitch plane. 
Figure 17. - True view o f  transverse plane showing 

crown tooth profile. 
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The maximum and minimum radii of curvature may now be determined directly by substitution 
into equations (40) and (41) or, alternatively, into equations (36) and (37). To do this, note that, 
based on equation (2), df/dr is 

where cp is still defined as the angle between the tooth surface normal and the Z axis. Then r and 
dr/dcp become 

R, sin $ tan cp 

(tan2 cp - k2) E 
r =  

and 

d r  - - k2Rc sin $ sec2 cp 

G - (tan2 cp - k2)3/2 

Hence, on using equations (36) and (37), R1 and R2 become 

I k2Rc sin $ s e d  cp 

(tan2 cp - k2dl2 

and 

I R, sin $ sec cp R2 = I (tan2 cp - k2) 

(79) 

These expressions may be written in more convenient form by expressing cp in terms of z; that is, 
by identifying z with f in equation (76), it is readily seen that 

Then, by equation (77), sec2 cp becomes 

sec2 cp= 1 + tan2 cp= 1 + k2+ (-)2k2R: k sin2 $ kV-z 

Hence, R1 and R2 may be written as 

{[(kV-z)/kI2(1 + k2) + k2R: sin2 $]3'2 

kR: sin2 $ 
R1= 

and 
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Discussion 
The basis of the foregoing exposition with theoretical spiral bevel gears is the assumption of a 

gear tooth having an involute profile in the transverse plane and a centerline as a logarithmic spiral. 
Although such gears are not convenient to manufacture, it is clear that unless the tooth centerline is a 
logarithmic spiral, the tooth profile, which engages the meshing gear, will not be uniform along the 
tooth. This could adversely modify the surface characteristics which, in turn, could affect the 
pressure angle, the bending stress, the contact stress, the lubrication, and the wear of the gear. Also, 
unless the gear tooth is spindled around the base cone, there could occur excessive sliding at  the heel 
and toe of the tooth during meshing-particularly if the tooth is long. 

The geometry of the circular-cut spiral bevel gears is somewhat simpler than that of the 
theoretical logarithmic spiral bevel gears. Admittedly, the restriction in the foregoing analysis to 
circular-cut crown gears contributes to the simplification. However, the modification of the 
foregoing expressions for conical gears can be obtained by following the procedures used for the 
logarithmic spiral gears. 

The formulas for the radii of curvature of a surface of revolution (eqs. (36), (37), (40), and (41)) 
are applicable to circular-cut gear surfaces of any profile. The involute profile was used as an 
example because of its simplicity and because of the interesting results. It should be noted, however, 
that the involute profile as considered above is in the radial plane of the cutter (the normal plane of 
the gear) and not the transverse plane. 

Finally, the straight-line crown profile in the transverse plane, when considered in the radial 
plane of the cutter, that is, the normal plane, generates a hyperboloid. Although this is a surface of 
revolution, it is also a “ruled surface’’ since it can be considered as generated by a one-parameter 
family of lines. Equations (84) and (71) show that the maximum radii of curvature occurs when z = kv 
or when y = 0, that is, at the pitch surface. Similarly, equation (84) shows that the minimum radii of 
curvature occurs at the greatest elevation above the pitch surface. 

Although the analysis and fabrication of circular-cut gears is considerably simpler than the 
theoretical logarithmic spiral gears, the apparent difference in their centerlines is relatively small. 
Indeed, Buckingham (ref. 1) has shown that within reasonable limits, the inclinations of the 
centerlines differ by less than ~ 6 ” .  However, the consequences of this difference in terms of its 
effects on the kinematics, the stresses, the lubrication, and the wear need further study. It is believed 
that the analytical procedures presented herein provide a basis for such studies. 
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