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ABSTRACT

M
An analysis of the surface geometry of spiral bevel gears farmed by a

w circular cutter is presented. The emphasis is upon determining the tooth

surface principal radii of curvature of crown (flat) gears. Specific re-

sults are presented for involute, straight, and hyperbolic cutter profiles.

It is shown that the geometry of circular cut spiral bevel gears is somewhat

simpler than a theoretical logarithmic spiral bevel gear.

INTRODUCTION

In a recent paper [1)** the fundamental geometrical characteristics of

theoretical spiral bevel gear tooth surfaces were studied and discussed with

particular emphasis given to the determination of the principal radii of

curvature. Such an analysis provides a point of departure for the study of

contact stresses, lubrication, wear, fatigue life, and gearing kinematics.

However, the theoretical gears studied in [1] have a tooth centerline in the

shape of a logarithmic spiral, and are, therefore, diffucult to manufac-

ture. (A logarithmic s piral has the property that all radial lines inter-

sect the curve at a constant angle. This leads to a uniformly shaped pro-

file of the gear tooth in the tangential planes of the gear, thus providing

*Member ASME.

**Numbers in brackets refer to references at the end of the paper.



2

for uniform meshing kinematics.) To overcome the fabrication difficulties,

gear manufacturers have approximated the logarithmic spiral with a circle,

leading to the widely used "circular-cut" spiral bevel gears. Indeed, prob-

ably more than 90 percent of the spiral bevel gears in use today are manu-

factured with a circular cutter. Moreover, Buckingham [2] has observed

that, within reasonable limits, a logarithmic spiral and a nearly concentric

circle differ by less than t6' in the inclination of their tangent lines -

although with some a^;llications this difference may be very significant.

Therefore, the objective of this paper is to present an analysis of the geo-

metrical characteristics of these circular cut gears. As in [1] the empha-

sis is the determination of the surface principal radii of curvature. To

keep the analysis as simple and as fundamental as possible, the discussion

is restricted to crown gears (i.e., flat gea rs) which form the so-called

"crown rack" of spiral bevel gears. Procedures for manufacturing such gears

are found in Refs. [3-7].

NOMENCLATURE

e i (i - 1,2)	 surface base vectors

9

9 ij (i, j - 1,2)

hi (i - 1,2)

h ij (i,j - 1,2)

G	 n
4

n

nr

^.	 n t

i
JQx'Ny'AZ

r

determinant of gij

metric tensor coefficients

fundamental vector defined by Eq. (5)

second fundamental tensor defined by Eq. (6)

unit vector normal to surface

see Fig. 3

radial unit vector (Fig. 3)

see Fig. 3

unit vectors parallel to XYZ

radius of surface of revolution, radial distance



ulIu2

x.y.z

& A a
x.y.Z

C

H,V

J

K

N

0

0c

P

P

P
M

Q

R

R 

R1•R2

S

T

X,Y,Z

X,Y,Z

e

b

surface defining par

coordinates of P r

coordinates relative to X,Y,Z

curve defining surface of revolution; cutter center (see

Fig. 5)

coordinates of Q (see Fig. 7)

mean curvature

Gaussiasn curvature

normal line to surface of resolution

origin of XYZ axis system (see also Fig. 3)

center of involute generating circle

typical point on surface

position vector to a typical point on surface

midpoint of crown gear tooth

see Fig. 3

radial line (see Fig. 2)

distance CPm (see Fig. 7), cutter radius (see Fig. 6)

principal radii of curvature

general surface

tangent line to C, tangent point

mutually perpendicular coordinate-axis sytem

mutually perpendicular coordinate-axis system (see Fig. 7)

angle between R and X-axis, pressure angle (see Figs. 6

and 7)

angle between N and Z-axis

inclination angle of T (see Fig. 1), spiral angle (see

Fig. 7)
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PRELIMINARY CONSIDERATIONS

Differential Geometry Formulae

Since the principal radii of curavature of a gear tooth surface at a

point are among the major factors affecting the lubrication, surface fa-

tigue, contact stress, wear, and life of the gear, it is helpful to summa-

rize the basic formulae from elementary differential geometry which may be

used to determine these radii of curvature.

Suppose a surface S is defined by a pair of parameters u l and u2

through the vector parametric equation P = P(u l ,u2 j where Pis the posi-

tion vector of a typical point P on S. Then base vectors ei (i . 192)

tangent to S at P are given by

e i = aP/au i	i • 1,2
	

(1)

A surface metric tensor g ij (i,j = 1,2) may then be defined as

g i j . ^0	 ej
	

(2)

Let g be the determinant of g ij . Then it is easily shown that

V''I el xe21
	

(3)

Hence, a unit vector n normal to S is thenow

,%, " ,^,1 X Arg
V

Let the fundamental vector h i (i • 1,2) be defined as

h i = an /aui
	

(5)

Then, the second fundamental tensor h ij (i,j • 1,,2) is defined as

c

.,
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hij - -,'. i • £1	 (6)

Letting h be the dete ►minant of h ij , the Gaussian cu rvature K is de-

fined as

	

K - h/g	 (7)

A positive Gaussian curvature indicates that all points in the surface in

the neighborhood o f P lie on the same side of a plane tangent to the sur-

face. Let k ij (i,j - 1,2) be defined as

1

	

kii -
 _1h	 (8)(8)

where gi jl `-s the inverse of g ij . (Regarding notation, repeated indices

represent a sum (i.e., from 1 to 2) over that index.) The mean curvature J

is then defined as

	

J - k it	 (9)

Finally, the principal normal radii of curvature R 1 and R2 are then cal-

culated in terms of J and K as:

1/2
R 1 ,R2 - 121

[j2 t (J2 - 4K)	 (10)

Surface of Revolution

The tooth surface of a circular cut spiral bevel crown gear is a "sur-

face or revolution." 'ghat is, it can be developed by rotating a curve in

the shape of the cutter profile, about a fixed axis. ConsiLer, for example,

the curve C shown in Fig. 1. If C is rotated about the Z-axis, it gen-

erates a surface of revolution S, a 9ortion of which can be considered as
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the surface of a circular cut spiral bevel crown gear. Let C be defined

by the expression:

z - fW
	

(11)

where r is the distance from the Z-axis to a typical point P on C.

Let 6 be the angle between the Z-axis and the normal tine N of S at

P. Then r and 6 are dependent upon each other. That is,

r - r(d)
	

(12)

Let 0 be the inclination angle of the tangent line T to C at P as

shown in Fig. 1. Then 0, b, and the slope of T are related as follows:

dz/dr - df/dr - tan 0 - -tan(w - 0) - -tan 6	 (13)

Consider a top view of S as shown in Fig. 2. In this view P is

seen to lie on a circle of radius r, and on a radial line R which makes

an angle a with the X-axis. Then the position vector P of P relative

to 0, a fixed point on the Z-axis (see Fig. 1) is:

P - z	 + r,r	 rnN„ + f(r)zz 	(14)

where ,r and i^z are unit vectors parallel to R and the Z-axis.

Hence, in terms of ,nrx , ay, and Nz, unit vectors parallel to the X, Y,

and Z axis, P becomes:ow

P - rcose ,nx + r sine^ny +f(r)az 	 (15)AW

Since r - r(6), P is a function of 6 and e. Therefore, it is conven-

ient to let 6 and a be the parameters u l and u2 defining S in the

parametric representation P - P(u l ,u2 ) of the foregoing differential geom-
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From Eq.Eq. (1), the surface base vectors £1 and 1 2 become:

(dr/d0)cos 4 ^x + (dr/d0)sin ® ay + (df/dr)(dr /d0).n

and

- tied - -r sin a nx + r cos o ,y

Then, from Eq. (2) the metric tensors components become:

911 - 9b0 - (dr/d0)s2 sec 20

912=921=9-960-0

and

922 = qee = r2

where Eq. (13) has been used to simplify the expressions. Hence, from

Eq. (4) the unit vector n, normal to S becomes:

n-sin0cosn x +sin6sineny + Cos 0nz

The fundamental vectors h i (i = b,e) and the second fundamental tensor

h ij (i,3 - 6,e) are then:

(16)

(17)

(18)

(19)

(20)

(zl)

hl =	 - an/a0 - cos 0 cos a ax + cos 0 sin a ny - sin 0 nz

,h 	 - „he an/ae- -sin 0 sin enx + sin 6 cos e

hll =
h 6 = -(dr/d0)sec 0

h12 = h21 
= hte = he6 - 

0

and

(22)

(23)

(24)

(25)
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(34)

8

h22 = h" _ -r sir I	 (26)

From Eqs. (7) and (9) the Gaussian curvature and the mean curvature become:

K = (sin b cos o)/(r dr/d0)	 (27)	 0 1

and

J = -[(cos 0)/(dr/d0) - (sin b)/r]	 (28)

Finally, using Eq. (10) the principal normal radii of curvvture become:

	

R 1 = j(dr/dO)Jcos 01	 (29)

and

R2 = +r/sin 61	 (30)

These expressions may be expressed in terms of f by using Eq. (13). That

is, since

	

4 = --tan-1(df/dr)
	

(31)

then WOW) becomes

dd/dr = -(d2f/dr2)/[1 + (df/dr)2]

	
(32)

and hence, R 1 and R2 become:

R 1 = 111 + ( df/dr) 2, / {(d2f/dr2 )Cos Itan-1(df/dro

R2 
0 

r/sin [tan-l(df/dr)1
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APPLICATION WITH GEAR TOOTH SURFACES

An Involute Curve

Perhaps the most fundamental and theoretically satisfying of all the

gear tooth shapes is that generated by an involute curve. Although it is

`	 not very practical to generate a spiral bevel gear tooth surface with a ro-

tating cutter in the shape of an involute curve, it is nevertheless informa

tive, as a simple illustration, to examine the surface of revolution formed

by an involute curve.

Consider the involute curve C as shown in Fig. 3. It is convenient

to think of C as being generated as the locus of points formed by the end

P of the tangent line QP as it rolls on the base circle. Then the radius

of curvature p of C at a typical point P is simply the length TP. It

is easily seen that p is one of the principal radii of curvature of the

surface of revolution which is obtained by revolving C about the Z-axis

in Fig. 3.

To see this, consider using Eqs. (79) and (30) of the foregoing analy-

sis. These equations require knowledge of the radial distance r as a

function of the angle (see Fig. 3). To obtain r(b) let 0 be that point

on the Z—axis which is at the same elevation as O c the center of the

circle generating c. Then r may be expressed as:

r. ,n^ • OP
	

(35)

R	 '
The vector OP may be written as (see Fig. 3):

i

	 OP . 0 + Q,cT + TP
	

(36)

or
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QP • bp + any - OfLnn t	(37)

where b is the distance OOc , a is the circle radius, and Oc is the

complement of b. In terms of n. and az o QP may be written as:

QP - [b - a cos 0 + a(w/2 - O)sin Olp r + [a sin o + a(w /2 - ®)cos 0]2, (38)

Hence, from Eq. (35) r and dr/db become:

r - b - a cos 8 + a(w/2 - b)sin 0	 (39)

and

Jr/dpi - a(w/2 - O)cos 0 	 (40)

Theeefore, from Eqs. (29) and (30) the principal radii of curvaturc of the

generated surface of revolution are:

R 1 - Ia(w/2 - 6)I	 (41)

and

R2 - lb csc 6 - a cos b + a(w/2 - 6)I 	 (42)

An examination of Fig. 3 shows that these expressions can be interpre-

ted simply as:

R1 - J TP) - Rmin	
(43)

and

R2 - (QP) - 'max	
(44)
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Finally, it is interesting to observe that if the same analysis is car-

rigid out for an involute curve generated in the opposite direction as in

Fig. 4 9 the corresponding surface of revolution has the principal radii of

curvature:

R1 - ITPI n Rmin
	 (45)

and

R2 - IQP I - Rmax
	 (46)

These results are, of course, similar to Eqs. (43) and (44). However, in

this case, the centers of curvature are on opposite sides of the surface,

since the Gaussian curvature is negative.

Straight Line Profile - Normal Plane

Consider next a rotating gear tooth nutter with a straight line profile

w0 c..h forms a gear tooth surface with a straight line profile in the normal

plane as shown in Figs. 5 and 6. Viewed as a surface of revolution, this is

a cone. Its defining equation may be expressed as:

z - ( r - R  )cot e
	

(47)

where a is the pressure angle as shown in Fig. 6 and R
C is the cutter ra-

dius at the base of the tooth. From this expression dz/dr and d2z/dr2



Zaz•k(y+V) (53)

a

x
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where ` is the complement of a as shown in Fig. 6. Hence. Eqs. (33) and

(34) give the maximum and minimum surfce radii of curvature as:

Rmax ' 
a	 (50)

and

Rmin ' irlcos of	 (51)

These results might also have been obtained by recalling that a cone is gen-

erated by straight line elements (hence, infinite radius of curvature) and

that the minimum radius of curvature is the distance QP as shown in Fig. 6.

Straight Line Profile - Transverse Plane

Finally, consider a rotating cutter whirs generates, for a crown gear,

a straight line meshing profile. Specifically, consider Fig. 7 which shows

the pitch plane of a crown gear where 0 is the gear center and C (with

X,Y coordinates H,V) is the center of the rotating cutter. Let P m be

the midpoint of the gear tooth surface and let 0 be the spiral angle.

The transverse plane is normal to the X-axis at Pm, Since 0 is

Cie gear center, the X-axis is a radial line and the intersection of the

transverse plane and the gear tooth surface defines the transverse meshing

profile shown in Fig. 8. If a is the transverse pressure angle, the equa-

tion of the inclined tooth profile is simply

Z = -y cot ova ky	 (52)

where t and y refer to coordinates along the Z and Y axis and k is
A A A

r	
defined as -cot ®. Relative to the X, Y, Z axis of Fig. 7, Eq. (52)

rt	 becomes



z . f(r) s f (X2 + y2` 2 	 (54)

The form of f, which defines the tooth surface of revolution, may be deter-

.	 mined by observing that the intersection of the revolution surface of the

cutter with the transverse plane, must coincide with the tooth profile of

Fig. 8. If Rc is the distance between C and Pm, then the X co-

ordinate of Pm is simply Rc sin 0. Hence, by letting x w Rc sin 0 and
by matching Eqs. (53) and (54), the following relation is obtained

f (p^ sin2 ^ + y2)
1/	

k(y + V)

Let r be defined as

r = 	 2 + 2 1/2(R 2c sink y)

Then in terms of r, y becomes

1/2
y • - (r2 - R^ sin 2^G,

where the negative root is required to be consistent with the coordinate

system in Fig. 7. Hence, by Eq. (55) f is determined as:

1/2
f(r) - k V - (r2 - R^ si:12 ►̂ )

which is the equation of an hyperboloid of revolution.

(55)

(56)

(57)

(58)

y
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The maximum and minimum radii of curvt.ture may now be etermined di-

rectly by substitution into Eqs. (33) and (34), or alternatively, into Eqs.

(29) and (30). To do this, note that based on Eq. (13)

1/2

df/dr • -tan 6	 kr Arl - Rc sin2 tp  	 (59)

where 6 is still defined as the angle between the tooth surface normal and

the 2-axis. Then r and dr/db become

r = R. sin 0 tan 6/(tan26 = k2)1/2	 (60)

and

dr/db = 42Rc sin 0 sec 26l(tan2
6 - k2 )112
	

(61)

Hence, upon using Eqs. (29) and (30), R 1 and R2 become

R 1	Ik
2
RC sin 0 s ; ;1 36/(tan26 - k2) 

3/21
	 (62)

and

R2 = I R0 sin 0 sec 0/(tantan 6 - k 
21
J 

1121

	 (63)

These expressions may be written in more ccnvenlent form by expressing

6 in terms of z. That is, by identifying z with f in Eq. (56), it is

readily seen that

r2 = R2 sin2O + ((kV - z)/k]2
	

(64)

Then, by Eq. (59) sec26 becomes
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sec 2b • 1 + tan 2p • 1 + k2 + [k/(kV - z)]2k2R2 sin 20	 (65)

Hence, R 1 and R2 may be written as

r

R 1	{ [(kV - z)/k] 2(1 * K2 )	 k2R2 sin 20) 3/2 / kR 2 sin 2 ^	 (66)

and

R2 •	 {(1 + k2 )[( kV - z)/k]2 + k2R2 si n
2
01 112
011/2 

k	
(67)

SUMMARY OF RESULTS

In this paper, the methods of that branch of mathematics called differ-

ential geometry were applied to determine the maximum and minimum radii of

curvature for circular cut bevel gear teeth. The following results were

obtained.

(1) A comparison of the foregoing analysis with that developed in

Ref. [1] shows that the geometry of the circular cut spiral bevel gears is

somewhat simpler than that of the theoretical logarithmic spiral gears.

Also, the restriction of the foregoing analysis to crown gears is a further

simplification. However, the modification of the foregoing expressions for

conical gears can be obtained by following the procedures outlined in

Ref. [1].

(2) The above formulae for the radii of curvature of a surface of

revolution (Eqs. (29), (30), (33), and (34)) are applicable to circular cut

gear surfaces of any profile. The involute profile was used as an example

because of its simplicity and because of the interesting results. It should

be noted, however, that the involute profile as considered above is in the



16

radial plane of the cutter (i.e., the normal plane) and not the transverse

plane of the gear.

(3) The straight line crown profile in the transverse plane, when

considered in the radial plane of the cutter (the normal plane), generates a

hyperboloid. Although this is a surface of revolution, it is also a "ruled

surface" since it can be considered as generated by a one-parameter family

of lines. Equations (66) and (53) show that the maximum radii of curvature

occurs when z - kv or when y - 0, that is, at the pitch surface.

Similarly, Eq. (66) shows that the minium radii of curvature o(.curs at the

greatest elevation above the pitch surface.

Finally, the analysis does not consider the effect of "crowning" or

other adjustments commonly made in the manufacture of spinal bevel gears.

In this sense, the foregoing analysis pertains primarily to theoretical

gears. The effects of crowning and geometrical variations due to grinding

and lapping needs additional study.
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Figure 6. - True view of normal plane showing crown gear tooth profile.
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