610 research outputs found

    Electric-Field-Induced Mott Insulating States in Organic Field-Effect Transistors

    Get PDF
    We consider the possibility that the electrons injected into organic field-effect transistors are strongly correlated. A single layer of acenes can be modelled by a Hubbard Hamiltonian similar to that used for the kappa-(BEDT-TTF)(2)X family of organic superconductors. The injected electrons do not necessarily undergo a transition to a Mott insulator state as they would in bulk crystals when the system is half-filled. We calculate the fillings needed for obtaining insulating states in the framework of the slave-boson theory and in the limit of large Hubbard repulsion, U. We also suggest that these Mott states are unstable above some critical interlayer coupling or long-range Coulomb interaction.Comment: 9 pages, 7 figure

    Psychometric properties of the transaddiction craving triggers questionnaire in alcohol use disorder.

    Get PDF
    We aimed to develop the transaddiction craving triggers questionnaire (TCTQ), which assesses the propensity of specific situations and contexts to trigger craving and to test its psychometric properties in alcohol use disorder (AUD). This study included a sample of 111 AUD outpatients. We performed exploratory factor analysis (EFA) and calculated item-dimension correlations. Internal consistency was measured with Cronbach's alpha coefficient. Construct validity was assessed through Spearman correlations with craving, emotional symptoms, impulsivity, mindfulness, and drinking characteristics. The EFA suggested a 3-factor solution: unpleasant affect, pleasant affect, and cues and related thoughts. Cronbach's coefficient alpha ranged from .80 to .95 for the three factors and the total score. Weak positive correlations were identified between the TCTQ and drinking outcomes, and moderate correlation were found between the TCTQ and craving strength, impulsivity, anxiety, depression, and impact of alcohol on quality of life. The 3-factor structure is congruent with the well-established propensity of emotions and cues to trigger craving. Construct validity is supported by close relations between the TCTQ and psychological well-being rather than between the TCTQ and drinking behaviors. Longitudinal validation is warranted to assess sensitivity to change of the TCTQ and to explore its psychometric properties in other addictive disorders

    Strong Suppression of Thermal Conductivity in the Presence of Long Terminal Alkyl Chains in Low-Disorder Molecular Semiconductors

    Get PDF
    While the charge transport properties of organic semiconductors have been extensively studied over the recent years, the field of organics-based thermoelectrics is still limited by a lack of experimental data on thermal transport and of understanding of the associated structure–property relationships. To fill this gap, a comprehensive experimental and theoretical investigation of the lattice thermal conductivity in polycrystalline thin films of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (Cn-DNTT-Cn with n = 0, 8) semiconductors is reported. Strikingly, thermal conductivity appears to be much more isotropic than charge transport, which is confined to the 2D molecular layers. A direct comparison between experimental measurements (3ω–Völklein method) and theoretical estimations (approach-to-equilibrium molecular dynamics (AEMD) method) indicates that the in-plane thermal conductivity is strongly reduced in the presence of the long terminal alkyl chains. This evolution can be rationalized by the strong localization of the intermolecular vibrational modes in C8-DNTT-C8 in comparison to unsubstituted DNTT cores, as evidenced by a vibrational mode analysis. Combined with the enhanced charge transport properties of alkylated DNTT systems, this opens the possibility to decouple electron and phonon transport in these materials, which provides great potential for enhancing the thermoelectric figure of merit ZT

    Optical absorption in boron clusters B6_{6} and B6+_{6}^{+} : A first principles configuration interaction approach

    Full text link
    The linear optical absorption spectra in neutral boron cluster B6_{6} and cationic B6+_{6}^{+} are calculated using a first principles correlated electron approach. The geometries of several low-lying isomers of these clusters were optimized at the coupled-cluster singles doubles (CCSD) level of theory. With these optimized ground-state geometries, excited states of different isomers were computed using the singles configuration-interaction (SCI) approach. The many body wavefunctions of various excited states have been analysed and the nature of optical excitation involved are found to be of collective, plasmonic type.Comment: 22 pages, 38 figures. An invited article submitted to European Physical Journal D. This work was presented in the International Symposium on Small Particles and Inorganic Clusters - XVI, held in Leuven, Belgiu

    Electronic polarization in pentacene crystals and thin films

    Full text link
    Electronic polarization is evaluated in pentacene crystals and in thin films on a metallic substrate using a self-consistent method for computing charge redistribution in non-overlapping molecules. The optical dielectric constant and its principal axes are reported for a neutral crystal. The polarization energies P+ and P- of a cation and anion at infinite separation are found for both molecules in the crystal's unit cell in the bulk, at the surface, and at the organic-metal interface of a film of N molecular layers. We find that a single pentacene layer with herring-bone packing provides a screening environment approaching the bulk. The polarization contribution to the transport gap P=(P+)+(P-), which is 2.01 eV in the bulk, decreases and increases by only ~ 10% at surfaces and interfaces, respectively. We also compute the polarization energy of charge-transfer (CT) states with fixed separation between anion and cation, and compare to electroabsorption data and to submolecular calculations. Electronic polarization of ~ 1 eV per charge has a major role for transport in organic molecular systems with limited overlap.Comment: 10 revtex pages, 6 PS figures embedde

    Conjugation-Length Dependence of Spin-Dependent Exciton Formation Rates in Pi-Conjugated Oligomers and Polymers

    Full text link
    We have measured the ratio, r = σS/σT\sigma_S/\sigma_T of the formation cross section, σ\sigma of singlet (σS\sigma_S) and triplet (σT\sigma_T) excitons from oppositely charged polarons in a large variety of π\pi-conjugated oligomer and polymer films, using the photoinduced absorption and optically detected magnetic resonance spectroscopies. The ratio r is directly related to the singlet exciton yield, which in turn determines the maximum electroluminescence quantum efficiency in organic light emitting diodes (OLED). We discovered that r increases with the conjugation length, CL; in fact a universal dependence exists in which r1r^{-1} depends linearly on CL1CL^{-1}, irrespective of the chain backbone structure. These results indicate that π\pi-conjugated polymers have a clear advantage over small molecules in OLED applications.Comment: 5 pages, 4 figure

    Hadamard renormalized scalar field theory on anti-de Sitter spacetime

    Get PDF
    We consider a real massive free quantum scalar field with arbitrary curvature coupling on n-dimensional anti–de Sitter spacetime. We use Hadamard renormalization to find the vacuum expectation values of the quadratic field fluctuations and the stress-energy tensor, presenting explicit results for n=2 to n=11 inclusive
    corecore