447 research outputs found

    Dark energy domination in the Virgocentric flow

    Full text link
    The standard \LambdaCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we focus now on the Virgo Cluster and the flow of expansion around it. We interpret the Hubble diagram, from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Our conclusions are: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances \ga 15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, due to the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.Comment: 7 pages, 2 figures, Astronomy and Astrophysics (accepted

    The Hall instability of weakly ionized, radially stratified, rotating disks

    Get PDF
    Cool weakly ionized gaseous rotating disk, are considered by many models as the origin of the evolution of protoplanetary clouds. Instabilities against perturbations in such disks play an important role in the theory of the formation of stars and planets. Thus, a hierarchy of successive fragmentations into smaller and smaller pieces as a part of the Kant-Laplace theory of formation of the planetary system remains valid also for contemporary cosmogony. Traditionally, axisymmetric magnetohydrodynamic (MHD), and recently Hall-MHD instabilities have been thoroughly studied as providers of an efficient mechanism for radial transfer of angular momentum, and of density radial stratification. In the current work, the Hall instability against nonaxisymmetric perturbations in compressible rotating fluids in external magnetic field is proposed as a viable mechanism for the azimuthal fragmentation of the protoplanetary disk and thus perhaps initiating the road to planet formation. The Hall instability is excited due to the combined effect of the radial stratification of the disk and the Hall electric field, and its growth rate is of the order of the rotation period.Comment: 15 pages, 2 figure

    Sources of Radiation in the Early Universe: The Equation of Radiative Transfer and Optical Distances

    Full text link
    We have derived the radiative-transfer equation for a point source with a specified intensity and spectrum, originating in the early Universe between the epochs of annihilation and recombination, at redshifts z_\s =10^8\div 10^4. The direct radiation of the source is separated from the diffuse radiation it produces. Optical distances from the source for Thomson scattering and bremsstrahlung absorption at the maximum of the thermal background radiation are calculated as a function of the redshift z.The distances grow sharply with decreasing z, approaching asymptotic values, the absorption distance increasing more slowly and reaching their limiting values at lower z. For the adopted z values, the optical parameters of the Universe can be described in a flat model with dusty material and radiation, and radiative transfer can be treated in a grey approximation.Comment: 14 pages, 2 figure

    Polygonal Structures in the Gaseous Disk: Numerical Simulations

    Full text link
    The results of numerical simulations of a gaseous disk in the potential of a stellar spiral density wave are presented. The conditions under which straightened spiral arm segments (rows) form in the gas component are studied. These features of the spiral structure were identified in a series of works by A.D. Chernin with coauthors. Gas-dynamic simulations have been performed for a wide range of model parameters: the pitch angle of the spiral pattern, the amplitude of the stellar spiral density wave, the disk rotation speed, and the temperature of the gas component. The results of 2D- and 3D-disk simulations are compared. The rows in the numerical simulations are shown to be an essentially nonstationary phenomenon. A statistical analysis of the distribution of geometric parameters for spiral patterns with rows in the observed galaxies and the constructed hydrodynamic models shows good agreement. In particular, the numerical simulations and observations of galaxies give 120\simeq 120^\circ for the average angles between straight segments.Comment: 22 pages, 10 figure

    On the Anisotropy of E0 >= 5.5×\times1019 eV Cosmic Rays according to Data of the Pierre Auger Collaboration

    Full text link
    The Pierre Auger Collaboration discovered, in a solid angle of radius about 18\degree, a local group of cosmic rays having energies in the region E0 \geq 5.5\times1019 eV and coming from the region of the Gen A radio galaxy, whose galactic coordinates are lG = 309.5\degree and bG = 19.4\degree. Near it, there is the Centaur supercluster of galaxies, its galactic coordinates being lG = 302.4\degree and bG = 21.6\degree. It is noteworthy that the Great Attractor, which may have a direct bearing on the observed picture, is also there

    Large-scale instability in a sheared nonhelical turbulence: formation of vortical structures

    Full text link
    We study a large-scale instability in a sheared nonhelical turbulence that causes generation of large-scale vorticity. Three types of the background large-scale flows are considered, i.e., the Couette and Poiseuille flows in a small-scale homogeneous turbulence, and the "log-linear" velocity shear in an inhomogeneous turbulence. It is known that laminar plane Couette flow and antisymmetric mode of laminar plane Poiseuille flow are stable with respect to small perturbations for any Reynolds numbers. We demonstrate that in a small-scale turbulence under certain conditions the large-scale Couette and Poiseuille flows are unstable due to the large-scale instability. This instability causes formation of large-scale vortical structures stretched along the mean sheared velocity. The growth rate of the large-scale instability for the "log-linear" velocity shear is much larger than that for the Couette and Poiseuille background flows. We have found a turbulent analogue of the Tollmien-Schlichting waves in a small-scale sheared turbulence. A mechanism of excitation of turbulent Tollmien-Schlichting waves is associated with a combined effect of the turbulent Reynolds stress-induced generation of perturbations of the mean vorticity and the background sheared motions. These waves can be excited even in a plane Couette flow imposed on a small-scale turbulence when perturbations of mean velocity depend on three spatial coordinates. The energy of these waves is supplied by the small-scale sheared turbulence.Comment: 12 pages, 14 figures, Phys. Rev. E, in pres

    On creating mass/matter by extra dimensions in the Einstein-Gauss-Bonnet gravity

    Full text link
    Kaluza-Klein (KK) black hole solutions in the Einstein-Gauss-Bonnet (EGB) gravity in DD dimensions obtained in the current series of the works by Maeda, Dadhich and Molina are examined. Interpreting their solutions, the authors claim that the mass/matter is created by the extra dimensions. To support this claim, one needs to show that such objects have classically defined masses. We calculate the mass and mass flux for 3D KK black holes in 6D EGB gravity whose properties are sufficiently physically interesting. Superpotentials for arbitrary types of perturbations on arbitrary curved backgrounds, recently obtained by the author, are used, and acceptable mass and mass flux are obtained. A possibility of considering the KK created matter as dark matter in the Universe is discussed.Comment: 15 pages, no figures, minor changes related to the Journal publication with adding two references in footnote

    Sulphur-bearing species in the star forming region L1689N

    Full text link
    We report observations of the expected main S-bearing species (SO, SO2 and H2S) in the low-mass star forming region L1689N. We obtained large scale (~300''x200'') maps of several transitions from these molecules with the goal to study the sulphur chemistry, i.e. how the relative abundances change in the different physical conditions found in L1689N. We identified eight interesting regions, where we carried out a quantitative comparative study: the molecular cloud (as reference position), five shocked regions caused by the interaction of the molecular outflows with the cloud, and the two protostars IRAS16293-2422 and 16293E. In the cloud we carefully computed the gas temperature and density by means of a non-LTE LVG code, while in other regions we used previous results. We hence derived the column density of SO, SO2 and H2S, together with SiO and H2CO - which were observed previously - and their relevant abundance ratios. We find that SiO is the molecule that shows the largest abundance variations in the shocked regions, whereas S-bearing molecules show more moderate variations. Remarkably, the region of the brightest SiO emission in L1689N is undetected in SO2, H2S and H2CO and only marginally detected in SO. In the other weaker SiO shocks, SO2 is enhanced with respect to SO. We propose a schema in which the different molecular ratios correspond to different ages of the shocks. Finally, we find that SO, SO2 and H2S have significant abundance jumps in the inner hot core of IRAS16293-2422 and discuss the implications of the measured abundances.Comment: Accepted 08/10/0

    Orion KL: The hot core that is not a "Hot Core"

    Full text link
    We present sensitive high angular resolution submillimeter and millimeter observations of torsionally/vibrationally highly excited lines of the CH3_3OH, HC3_3N, SO2_2, and CH3_3CN molecules and of the continuum emission at 870 and 1300 μ\mum from the Orion KL region, made with the Submillimeter Array (SMA). These observations plus recent SMA CO J=3-2 and J=2-1 imaging of the explosive flow originating in this region, which is related to the non-hierarchical disintegration of a massive young stellar system, suggest that the molecular Orion "Hot Core" is a pre-existing density enhancement heated from the outside by the explosive event -- unlike in other hot cores we do not find any self-luminous submillimeter, radio or infrared source embedded in the hot molecular gas. Indeed, we do not observe filamentary CO flow structures or "fingers" in the shadow of the hot core pointing away from the explosion center. The low-excitation CH3_3CN emission shows the typical molecular heart-shaped structure, traditionally named the Hot Core, and is centered close to the dynamical origin of the explosion. The highest excitation CH3_3CN lines are all arising from the northeast lobe of the heart-shaped structure, {\it i. e.} from the densest and most highly obscured parts of the Extended Ridge. The torsionally excited CH3_3OH and vibrationally excited HC3_3N lines appear to form a shell around the strongest submillimeter continuum source. Surprisingly the kinematics of the Hot Core and Compact Ridge regions as traced by CH3_3CN and HC3_3N also reveal filament-like structures that emerge from the dynamical origin. All of these observations suggest the southeast and southwest sectors of the explosive flow to have impinged on a pre-existing very dense part of the Extended Ridge, thus creating the bright Orion KL Hot Core.Comment: Submitted to A&
    corecore