694 research outputs found

    MHD oxidant intermediate temperature ceramic heater study

    Get PDF
    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented

    Modification of the ECAS reference steam power generating plant to comply with the EPA 1979 new source performance standards

    Get PDF
    Detailed capital cost estimates for the ECAS and modified reference plants in mid-1978 dollars for both 250 and 175 F (394 and 353 K) stack gas reheat temperatures based on the cost estimates developed for the ECAS study are presented. The scope of the work included technical assessment of sulfur dioxide scrubber system design, on site calcination versus purchased lime, reheat of stack gas, effect of sulfur dioxide scrubber on particulate emission, and control of nitrogen oxides

    Sensitivity to temporal structure facilitates perceptual analysis of complex auditory scenes

    Get PDF
    The notion that sensitivity to the statistical structure of the environment is pivotal to perception has recently garnered considerable attention. Here we investigated this issue in the context of hearing. Building on previous work (Sohoglu and Chait, 2016a; elife), stimuli were artificial 'soundscapes' populated by multiple (up to 14) simultaneous streams ('auditory objects') comprised of tone-pip sequences, each with a distinct frequency and pattern of amplitude modulation. Sequences were either temporally regular or random. We show that listeners' ability to detect abrupt appearance or disappearance of a stream is facilitated when scene streams were characterized by a temporally regular fluctuation pattern. The regularity of the changing stream as well as that of the background (non-changing) streams contribute independently to this effect. Remarkably, listeners benefit from regularity even when they are not consciously aware of it. These findings establish that perception of complex acoustic scenes relies on the availability of detailed representations of the regularities automatically extracted from multiple concurrent streams

    Detection of appearing and disappearing objects in complex acoustic scenes.

    Get PDF
    The ability to detect sudden changes in the environment is critical for survival. Hearing is hypothesized to play a major role in this process by serving as an "early warning device," rapidly directing attention to new events. Here, we investigate listeners' sensitivity to changes in complex acoustic scenes-what makes certain events "pop-out" and grab attention while others remain unnoticed? We use artificial "scenes" populated by multiple pure-tone components, each with a unique frequency and amplitude modulation rate. Importantly, these scenes lack semantic attributes, which may have confounded previous studies, thus allowing us to probe low-level processes involved in auditory change perception. Our results reveal a striking difference between "appear" and "disappear" events. Listeners are remarkably tuned to object appearance: change detection and identification performance are at ceiling; response times are short, with little effect of scene-size, suggesting a pop-out process. In contrast, listeners have difficulty detecting disappearing objects, even in small scenes: performance rapidly deteriorates with growing scene-size; response times are slow, and even when change is detected, the changed component is rarely successfully identified. We also measured change detection performance when a noise or silent gap was inserted at the time of change or when the scene was interrupted by a distractor that occurred at the time of change but did not mask any scene elements. Gaps adversely affected the processing of item appearance but not disappearance. However, distractors reduced both appearance and disappearance detection. Together, our results suggest a role for neural adaptation and sensitivity to transients in the process of auditory change detection, similar to what has been demonstrated for visual change detection. Importantly, listeners consistently performed better for item addition (relative to deletion) across all scene interruptions used, suggesting a robust perceptual representation of item appearance

    Numerical modeling of Bridgman growth of PbSnTe in a magnetic field

    Get PDF
    In this work we study heat and mass transport, fluid motion, and solid/liquid phase change in the process of steady Bridgman growth of Pb(.8)Sn(.2)Te (LTT) in an axially-imposed uniform magnetic field under terrestrial and microgravity conditions. In particular, this research is concerned with the interrelationships among segregation, buoyancy-driven convection, and magnetic damping in the LTT melt. The main objectives are to provide a quantitative understanding of the complex transport phenomena during solidification of the nondilute binary of LTT, to provide estimates of the strength of magnetic field required to achieve the desired diffusion-dominated growth, and to assess the role of magnetic damping for space and earth based control of the buoyancy-induced convection. The problem was solved by using FIDAP and numerical results for both vertical and horizontal growth configurations with respect to the acceleration of gravity vector are presented

    Structure-function mapping of a heptameric module in the nuclear pore complex.

    Get PDF
    The nuclear pore complex (NPC) is a multiprotein assembly that serves as the sole mediator of nucleocytoplasmic exchange in eukaryotic cells. In this paper, we use an integrative approach to determine the structure of an essential component of the yeast NPC, the ~600-kD heptameric Nup84 complex, to a precision of ~1.5 nm. The configuration of the subunit structures was determined by satisfaction of spatial restraints derived from a diverse set of negative-stain electron microscopy and protein domain-mapping data. Phenotypic data were mapped onto the complex, allowing us to identify regions that stabilize the NPC's interaction with the nuclear envelope membrane and connect the complex to the rest of the NPC. Our data allow us to suggest how the Nup84 complex is assembled into the NPC and propose a scenario for the evolution of the Nup84 complex through a series of gene duplication and loss events. This work demonstrates that integrative approaches based on low-resolution data of sufficient quality can generate functionally informative structures at intermediate resolution

    The human 'pitch center' responds differently to iterated noise and Huggins pitch

    Get PDF
    A magnetoencephalographic marker for pitch analysis (the pitch onset response) has been reported for different types of pitch-evoking stimuli, irrespective of whether the acoustic cues for pitch are monaurally or binaurally produced. It is claimed that the pitch onset response reflects a common cortical representation for pitch, putatively in lateral Heschl's gyrus. The result of this functional MRI study sheds doubt on this assertion. We report a direct comparison between iterated ripple noise and Huggins pitch in which we reveal a different pattern of auditory cortical activation associated with each pitch stimulus, even when individual variability in structure-function relations is accounted for. Our results suggest it may be premature to assume that lateral Heschl's gyrus is a universal pitch center

    Perception of Filtered Speech by Children with Developmental Dyslexia and Children with Specific Language Impairments

    Get PDF
    Here we use two filtered speech tasks to investigate children’s processing of slow (<4 Hz) versus faster (∼33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 – 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discusse

    Melt Stabilization of PbSnTe in a Magnetic Field

    Get PDF
    Both the experimental observation and numerical simulation indicate that the Bridgman growth of PbSnTe under the microgravity environment in space is still greatly influenced by buoyancy-induced convection. The application of a magnetic field during the semiconductor growth can dampen the convective flow in the metal-like melt. However, for Bridgman growth of PbSnTe on earth (with either vertical or horizontal configuration), both experimental observation and numerical modeling suggest that even with a strong magnetic furnace (5-Tesla constant axial magnetic field), the convective flow in the melt still cannot be sufficiently suppressed to reach the diffusion-controlled level. In order to completely dampen the buoyancy-induced convection on earth, estimates based on scaling analysis indicate that for common experimental conditions, an extremely high magnetic field is required, far beyond the capacity of the experimental apparatus currently available. Therefore, it is proposed that only the combination of microgravity environment and magnetic damping will produce the desired diffusion-controlled growth state for this particular material. The primary objectives of this study are to provide a quantitative understanding of the complex transport phenomena during solidification of non-dilute binarys, to furnish a numerical tool for furnace design and growth condition optimization, to provide estimates of the required magnetic field strength for low gravity growth, and to assess the role of magnetic damping for space and earth control of the double-diffusive convection. As an integral part of a NASA research program, our numerical simulation supports both the flight and ground-based experiments in an effort to bring together a complete picture of the complex physical phenomena involved in the crystal growth process. For Bridgman growth of PbSnTe under microgravity (with both vertical and horizontal configurations), the simulations suggest that a moderate axial magnetic field of only a few kilo-Gauss in strength could effectively eliminate buoyancy-induced convection in the melt and control solute segregation. Therefore, this work confirms the idea that the combination of microgravity environment and the magnetic damping will indeed be sufficient to produce the desired diffusion-controlled growth state for PbSnTe
    corecore