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1. INTRODUCTION

Both the experimental observation [1] and numerical simulation [2] indicate that the Bridgman

growth of PbSnTe under the microgravity environment in space is still greatly influenced by

buoyancy-induced convection The application of a magnetic field during the semiconductor

growth can dampen the convective flow in the metal-like melt [3-5] However, for Bridgman

growth of PbSnTe on earth (with either vertical or horizontal configuration), both experimental

observation [6] and numerical modeling [7] suggest that even with a strong magnetic furnace

(5-Tesla constant axial magnetic field), the convective flow in the melt still cannot be sufficiently

suppressed to reach the diffusion-controlled level. In order to completely dampen the

buoyancy-induced convection on earth, estimates based on scaling analysis indicate that for

common experimental conditions, an extremely high magnetic field is required, far beyond the

capacity of the experimental apparatus currently available. Therefore, it is proposed that only the

combination of microgravity environment and magnetic damping will produce the desired

diffusion-controlled growth state for this particular material.

jr.

The primary objectives of this study are to provide a quantitative understanding of the complex

transport phenomena during solidification of non-dilute binarys, to furnish a numerical tool for

furnace design and growth condition optimization, to provide estimates of the required magnetic

field strength for low gravity growth, and to assess the role of magnetic damping for space and

earth control of the double-diffusive convection. As an integral part of a NASA research

program, our numerical simulation supports both the flight and ground-based experiments in an

effort to bring together a complete picture of the complex physical phenomena involved in the

crystal growth process.
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2. MATHEMATICAL MODEL

2.1 Magnetohydrodynamic Models

In the literature [8], there are mainly three approximations for the MHD equations. The most

complex approximation incorporates the interaction between fluid flow and the magnetic field

and its derivation can be found in [9]. This model is valid for describing MHD effects in

electrically conducting melts of non-magnetic metals or semiconductors in which Ohm's law is

valid and the fluid velocity is small compared to the speed of light.

The second is a more restrictive approximation which assumes that the fluid flow does not disturb

the externally applied field with the Lorentz force still being present. This approximation is valid

if the magnetic Reynolds number and the magnetic Prandtl number are both small which is the

case in typical crystal growth of semiconductors. The derivation of the governing MHD

equations can be found in [10].

The third and simplest MHD model is the so-called induction free approximation. In this

approximation, any induced electrical field is set to be identically zero and thereby the MHD

effects of the imposed field can be solely expressed through the Lorentz force term in the

momentum equation. Because the magnetic Reynolds number is negligibly small under the

growth conditions considered herein, this model applies well to our case and is used in the

present study.

2.2 Governing Equations

In this paper, the liquid pseudo-binary mixture of LTT is assumed to behave as a Newtonian fluid

and its motion is described by the Navier-Stokes equation. Other governing equations include

the incompressibility condition, energy equation and concentration equation, plus the phase

change conditions at the solid/liquid interface and the appropriate boundary conditions.

2.3 The FEM Model

We consider vertical and horizontal Bridgman growth configurations. For bottom seeded

(vertical) Bridgman growth with axisymmetric boundary conditions, it is reasonable to assume

that the heat, species and flow fields are all axisymmetric.

The so-called pseudo-steady-state model (PSSM) [11] is adopted in the present work. In PSSM,

the directional steady movement of the solid/liquid interface during the steady growth is modeled

by letting melt enter at its hot end with a uniform growth velocity and composition and by

removing the crystal from the cold end at a speed that conserves the mass of the alloy in the

system. This simplification is valid for long ampoules and melts with low Prandtl numbers, in

which the transient effects on heat transfer are small [ 12].

The axisymmetric and 2-D FEM models are built with the 4-node bilinear element, in which

velocity, temperature and species are approximated by bilinear shape functions. The pressure is
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approximated as piecewise constant. The moving solid-liquid interface is modeled by the

front-tracking technique [13]. To update the interface position and remesh the interior domains,

a method of spines [14,15] is used. The nonlinear algebraic system resulting from the FEM

discretization procedure is solved by a segregated solution approach. Details of the FEM

formulation in FIDAP are documented in [14]. The nonlinear iteration termination is controlled

by a specified tolerance of for the relative error norms of velocity, residual and flee surface

update.

3. NUMERICAL RESULTS

The action of an axial magnetic field on convection in the melt is to interfere with the radial

velocity component. At large magnetic field strength, the magnitude of the radial velocity is

inversely proportional to the square of the strength of magnetic field [ 11 ]. The axial velocity

component is not affected by the magnetic field except in the coupling through the

incompressibility condition. When the field is large enough, an almost uniaxial flow can always be

obtained. One of the goals of this study is to quantitatively determine the required magnetic field

levels at which the diffusion-controlled growth can be achieved in orbit. In this section we

provide a typical analysis of magnetic damping for vertical Bridgman growth at a low gravity of.

Our numerical results suggest that the influence of magnetic damping on the convective flow in

the melt is indeed very effective. There are two large counter-rotating flow cells throughout the

liquid region indicating the existence of significant convection caused by both thermal and solutal

buoyancy forces. At 3kG, the convective flow is greatly affected and the flow cells become much

smaller corresponding to much weaker convective strength. It is interesting to note that there is a

critical value between 3.0 and 3.14kG for this specific problem. When B exceeds this critical

value, the flow cells are completely suppressed. At B=9.6kG, the streamlines become perfectly

straight which suggests that a diffusion-dominated growth state has been achieved.

We next examine the effects of magnetic damping on the solute segregation. Solute segregation

phenomena on the macroscopic scale can be divided into two classes; namely longitudinal (axial)

macro segregation caused by mixing on the melt length scale and transverse (radial) segregation

caused by low levels of mixing near the interface and by interface curvature. As analyzed by

D.H Kim et al [11], these two forms of segregation are a function of convection level in the

melt. In our computation, we consider variable-level magnetic damping under a constant gravity

level and a fixed set of furnace parameters. Consequently the convective strength, and hence the

solute segregation, is directly related to the strength of the imposed magnetic field. The solute

field is visualized via iso-concentration contour plots, which illustrates qualitatively how solute

segregation changes with increase of magnetic field. The axial solute segregation is greatly
reduced at 3 kG and an almost diffusion-dominated growth (characterized by the thin diffusion

boundary layer near the interface) is reached at 9.6 kG.

In order to quantitatively describe the effects of magnetic damping and the transition from growth

with intensive laminar convective mixing to diffusion-controlled growth (without bulk

convection), we compute three representative quantities. The first is the maximum total velocity,

which can be used as a measure of the convective strength in the melt. Note that the total

velocity includes a constant translation velocity (the growth rate) and the buoyancy-induced

convective flow velocity. The results are given in Figure I. The U,,_, v.s. B curve given in
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Figure 1. Quantitative descriptions of

the effect of magnetic damping on

convective flow strength and solute

segregation in the PbSnTe melt.

(a) The total maximum velocity; (b)

The effective segregation coefficient,

(c) The percentage radial segregation.

Figure l(a) shows that there are two stages during the

magnetic damping process. The first is a rapid change

stage in which the strength of the convective flow in the

melt is greatly reduced with an increase of B. The second

is a slow (asymptotic) change stage during which the

velocity decreases very slowly with the increase orB.

These two stages are divided by the critical field value, B c

(in this particular example) and can be clearly seen in

Figure l(a). In this case, over 90% of the original

strength of convection is damped when is increased from

zero to about 3 kG. However it requires an additional 6

kG or more to eliminate nearly all of the original velocity

strength.

The second quantified parameter is the effective

segregation coefficient kcer. The third is the percentage

radial segregation. Radial segregation results show that

both weak and strong convection levels produce low

radial segregation, while intermediate convection levels

produce high radial segregation [16]. The computed

segregation coefficients for vertical growth are plotted as

a function of levels in Figures l(b) and (c). The two

stages mentioned above can be easily distinguished. It is

seen from Figure l(b) that increases effectively in the first

stage (0<B<Bc) and then asymptotically approaches unity

at the second stage (B>B,). k=_--1 indicates quantitatively

that the desired difffusion-controlled growth state is indeed

achieved at B=9.6kG. Figure l(c) shows how radial

segregation changes with increasing B, while the

expected qualitative behavior of the radial segregation is

evident from Figure l(c), it is clear that during the first

stage, the reduction in flow strength only minimally affects

the local segregation conditions near the interface. The

almost complete stoppage of convection around has a

dramatic effect on the radial segregation with a slow

asymptotic regime at higher magnetic field strength.

The analysis presented in this section is limited to the vertical growth under microgravity. At high

gravity levels (e.g. at full earth gravity level), our results suggest that the axially imposed

magnetic field is not effective for suppressing convective flow in the PbSnTe melt. A typical

example of magnetic damping for the vertical growth of PbSnTe on earth was shown in [17],

which suggests that the maximum fluid velocity is still about 1000 times higher than crystal

growth rate at 60 kG and the decrease of the fluid velocity is much slower than that at the

microgravity gravity levels.
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4. EXPERIENTIAL

The Earth based experiments are relatively straight forward. Crystals are grown in a magnetic

field. After growth they are evaluated for compositional uniformity and defect structure. The

experimental parameters are ampoule dimensions, temperature gradient, and magnetic field

strength and orientation. The solutal driving force can be varied by both changing the growth

rate, the temperature gradient, ampoule size, and by changing the starting ratio of SnTe to PbTe.

Numerical analysis helps select the experimental matrix.

Experimental results to date of 1 cm diameter crystals grown in a 80 C/cm thermal gradient with

growth rate as a parameter are indistinguishable from the totally mixed results obtained without

magnetic fields, even with the 5T field. This result, for these conditions, was predicted by our

numerical analysis.

5. CONCLUSIONS

For Bridgman growth of PbSnTe under microgravity (with both vertical and horizontal

configurations), the simulations suggest that a moderate axial magnetic field of only a few

kilo-Gauss in strength could effectively eliminate buoyancy-induced convection in the melt and

control solute segregation. Therefore, this work confirms the idea that the combination of

microgravity environment and the magnetic damping will indeed be sufficient to produce the

desired diffusion-controlled growth state for PbSnTe.
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