125 research outputs found

    Nanoscale electrical conductivity of the purple membrane monolayer

    Get PDF
    Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our results show that the purple membrane can carry significant current density at the nanometer scale, several orders of magnitude larger than previously estimated by macroscale measurements

    Nanoscale electrical conductivity of the purple membrane monolayer

    Get PDF
    Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our results show that the purple membrane can carry significant current density at the nanometer scale, several orders of magnitude larger than previously estimated by macroscale measurements

    Does Hypoxia and Stress Erythropoiesis Compromise Cardiac Function in Healthy Adults? A Randomized Trial

    Get PDF
    Objectives: To investigate whether recombinant human erythropoietin (rHuEPO) injections during an altitude training camp impact heart function. Methods: Thirty (12 women) moderately trained subjects stayed at 2320 m altitude for 4 weeks while training. Subjects were randomized to placebo (isotonic saline) or rHuEPO (20 IU/kg body weight) i.v. injections. Transthoracic echocardiography imaging was acquired 3 days after arrival to altitude and prior to the first placebo or rHuEPO injection as well as one day after the last rHuEPO injection three weeks later. Results: rHuEPO did not alter cardiovascular morphology parameters, systolic or diastolic function. In the placebo group, altitude exposure improved left ventricle (LV) systolic function due to an increased twist angle but rHuEPO had no additional effects. Pulmonary arterial systolic pressure was unaffected in either group. Notably, rHuEPO hampered LV untwist rate without affecting LV early filling. Conclusion: rHuEPO provided during mild altitude exposure does not cause any major effects on heart function. The observed alteration in LV untwist induced by rHuEPO is unlikely to have a meaningful clinical effect

    Convalescent plasma treatment for patients of 80 years and older with COVID-19 pneumonia

    Get PDF
    Background: Older patients, frequently with multiple comorbidities, have a high mortality from COVID-19 infection. Convalescent plasma (CP) is a therapeutic option for these patients. Our objective is to retrospectively evaluate the efficacy and adverse events of CP treatment in this population group. Methods: Forty one patients over 80 years old with COVID-19 pneumonia received CP added to standard treatment, 51.2% with high anti-SARS-CoV-2 IgG titers and 48.8% with low titers. Median time between the onset of symptoms and the infusion of plasma was 7 days (IQR 4-10). A similar group of 82 patients who received only standard treatment, during a period in which CP was not available, were selected as a control group. Results: In-hospital mortality was 26.8% for controls and 14.6% for CP patients (P = 0.131) and ICU admission was 8.5% for controls and 4.9% for CP patients (P = 0.467). Mortality tended to be lower in the high-titer group (9.5%) than in the low-titer group (20%), and in patients transfused within the first 7 days of symptom onset (10%) than in patients transfused later (19.1%), although the differences were not statistically significant (P = 0.307 and P = 0.355 respectively). There was no difference in the length of hospitalization. No significant adverse events were associated with CP treatment. Conclusions: Convalescent plasma treatment in patients over 80 years old with COVID-19 pneumonia was well tolerated but did not present a statistically significant difference in hospital mortality, ICU admission, or length of hospitalization. The results should be interpreted with caution as only half the patients received high-titer CP and the small number of patients included in the study limits the statistical power to detect significant differences

    A new chemo-evolutionary population synthesis model for early-type galaxies. II: Observations and Results

    Get PDF
    We present here the results of applying a new chemo-evolutionary stellar population model developed by ourselves in a previous paper (Vazdekis et al. 1996) to new high quality observational data of the nuclear regions of two representative elliptical galaxies and the bulge of the Sombrero galaxy. Here we fit in detail about 20 absorption lines and 6 optical and near-infrared colors following two approaches: fitting a single-age single-metallicity model and fitting our full chemical evolutionary model. We find that all of the iron lines are weaker than the best fitting models predict, indicating that the iron-abundance is anomalous and deficient. We also find that the Ca_I index at 4227 A is much lower than predicted by the models. We can obtain good fits for all the other lines and observed colors with models of old and metal-rich stellar populations, and can show that the observed radial gradients are due to metallicity decreasing outward. We find that good fits are obtained both with fully evolutionary models and with single-age single-metallicity models. This is due to the fact that in the evolutionary model more than 80% of stars form with in 1.5 Gyr after the formation of the galaxies. The fact that slightly better fits are obtained with evolutionary models indicates these galaxies contain a small spread in metallicity.Comment: 29 pages, Latex with 22 figures and 2 landscape tables in ps-format. Paper to be published in the Ap. J. Suppl., June 199

    Gas flows, star formation and galaxy evolution

    Get PDF
    In the first part of this article we show how observations of the chemical evolution of the Galaxy: G- and K-dwarf numbers as functions of metallicity, and abundances of the light elements, D, Li, Be and B, in both stars and the interstellar medium (ISM), lead to the conclusion that metal poor HI gas has been accreting to the Galactic disc during the whole of its lifetime, and is accreting today at a measurable rate, ~2 Msun per year across the full disc. Estimates of the local star formation rate (SFR) using methods based on stellar activity, support this picture. The best fits to all these data are for models where the accretion rate is constant, or slowly rising with epoch. We explain here how this conclusion, for a galaxy in a small bound group, is not in conflict with graphs such as the Madau plot, which show that the universal SFR has declined steadily from z=1 to the present day. We also show that a model in which disc galaxies in general evolve by accreting major clouds of low metallicity gas from their surroundings can explain many observations, notably that the SFR for whole galaxies tends to show obvious variability, and fractionally more for early than for late types, and yields lower dark to baryonic matter ratios for large disc galaxies than for dwarfs. In the second part of the article we use NGC 1530 as a template object, showing from Fabry-Perot observations of its Halpha emission how strong shear in this strongly barred galaxy acts to inhibit star formation, while compression acts to stimulate it.Comment: 20 pages, 10 figures, to be presented at the "Penetrating Bars through Masks of Cosmic Dust" conference in South Africa, proceedings published by Kluwer, Eds. D.L. Block, K.C. Freeman, I. Puerari, & R. Groes

    Gas Accretion and Galactic Chemical Evolution: Theory and Observations

    Full text link
    This chapter reviews how galactic inflows influence galaxy metallicity. The goal is to discuss predictions from theoretical models, but particular emphasis is placed on the insights that result from using models to interpret observations. Even as the classical G-dwarf problem endures in the latest round of observational confirmation, a rich and tantalizing new phenomenology of relationships between MM_*, ZZ, SFR, and gas fraction is emerging both in observations and in theoretical models. A consensus interpretation is emerging in which star-forming galaxies do most of their growing in a quiescent way that balances gas inflows and gas processing, and metal dilution with enrichment. Models that explicitly invoke this idea via equilibrium conditions can be used to infer inflow rates from observations, while models that do not assume equilibrium growth tend to recover it self-consistently. Mergers are an overall subdominant mechanism for delivering fresh gas to galaxies, but they trigger radial flows of previously-accreted gas that flatten radial gas-phase metallicity gradients and temporarily suppress central metallicities. Radial gradients are generically expected to be steep at early times and then flattened by mergers and enriched inflows of recycled gas at late times. However, further theoretical work is required in order to understand how to interpret observations. Likewise, more observational work is needed in order to understand how metallicity gradients evolve to high redshifts.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. 29 pages, 2 figure

    Performance of Prognostic Scoring Systems in MINOCA: A Comparison among GRACE, TIMI, HEART, and ACEF Scores

    Get PDF
    Background: the prognosis of patients with myocardial infarction with non-obstructive coronary arteries (MINOCA) is not benign; thus, prompting the need to validate prognostic scoring systems for this population. Aim: to evaluate and compare the prognostic performance of GRACE, TIMI, HEART, and ACEF scores in MINOCA patients. Methods: A total of 250 MINOCA patients from January 2017 to September 2021 were included. For each patient, the four scores at admission were retrospectively calculated. The primary outcome was a composite of all-cause death and acute myocardial infarction (AMI) at 1-year follow-up. The ability to predict 1-year all-cause death was also tested. Results: Overall, the tested scores presented a sub-optimal performance in predicting the composite major adverse event in MINOCA patients, showing an AUC ranging between 0.7 and 0.8. Among them, the GRACE score appeared to be the best in predicting all-cause death, reaching high specificity with low sensitivity. The best cut-off identified for the GRACE score was 171, higher compared to the cut-off of 140 generally applied to identify high-risk patients with obstructive AMI. When the scores were tested for prediction of 1-year all-cause death, the GRACE and the ACEF score showed very good accuracy (AUC = 0.932 and 0.828, respectively). Conclusion: the prognostic scoring tools, validated in AMI cohorts, could be useful even in MINOCA patients, although their performance appeared sub-optimal, prompting the need for risk assessment tools specific to MINOCA patients

    Gas Accretion and Star Formation Rates

    Full text link
    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star-formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star-formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star-formation are analyzed, specifically, the short gas consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the alpha-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    Stellar populations of bulges at low redshift

    Full text link
    This chapter summarizes our current understanding of the stellar population properties of bulges and outlines important future research directions.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen E., Peletier R., Gadotti D., Springer Publishing. 34 pages, 12 figure
    corecore