76 research outputs found

    MISTIC2: Comprehensive server to study coevolution in protein families

    Get PDF
    Correlated mutations between residue pairs in evolutionarily related proteins arise from constraints needed to maintain a functional and stable protein. Identifying these inter-related positions narrows down the search for structurally or functionally important sites. MISTIC is a server designed to assist users to calculate covariation in protein families and provide them with an interactive tool to visualize the results. Here, we present MISTIC2, an update to the previous server, that allows to calculate four covariation methods (MIp, mfDCA, plmDCA and gaussianDCA). The results visualization framework has been reworked for improved performance, compatibility and user experience. It includes a circos representation of the information contained in the alignment, an interactive covariation network, a 3D structure viewer and a sequence logo. Others components provide additional information such as residue annotations, a roc curve for assessing contact prediction, data tables and different ways of filtering the data and exporting figures. Comparison of different methods is easily done and scores combination is also possible. A newly implemented web service allows users to access MISTIC2 programmatically using an API to calculate covariation and retrieve results. MISTIC2 is available at: https://mistic2.leloir.org.ar.Fil: Colell, Eloy A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Iserte, Javier Alonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Marino Buslje, Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Discovery and Expansion of Gene Modules by Seeking Isolated Groups in a Random Graph Process

    Get PDF
    BACKGROUND: A central problem in systems biology research is the identification and extension of biological modules-groups of genes or proteins participating in a common cellular process or physical complex. As a result, there is a persistent need for practical, principled methods to infer the modular organization of genes from genome-scale data. RESULTS: We introduce a novel approach for the identification of modules based on the persistence of isolated gene groups within an evolving graph process. First, the underlying genomic data is summarized in the form of ranked gene-gene relationships, thereby accommodating studies that quantify the relevant biological relationship directly or indirectly. Then, the observed gene-gene relationship ranks are viewed as the outcome of a random graph process and candidate modules are given by the identifiable subgraphs that arise during this process. An isolation index is computed for each module, which quantifies the statistical significance of its survival time. CONCLUSIONS: The Miso (module isolation) method predicts gene modules from genomic data and the associated isolation index provides a module-specific measure of confidence. Improving on existing alternative, such as graph clustering and the global pruning of dendrograms, this index offers two intuitively appealing features: (1) the score is module-specific; and (2) different choices of threshold correlate logically with the resulting performance, i.e. a stringent cutoff yields high quality predictions, but low sensitivity. Through the analysis of yeast phenotype data, the Miso method is shown to outperform existing alternatives, in terms of the specificity and sensitivity of its predictions

    Diffusion Model Based Spectral Clustering for Protein-Protein Interaction Networks

    Get PDF
    BACKGROUND: A goal of systems biology is to analyze large-scale molecular networks including gene expressions and protein-protein interactions, revealing the relationships between network structures and their biological functions. Dividing a protein-protein interaction (PPI) network into naturally grouped parts is an essential way to investigate the relationship between topology of networks and their functions. However, clear modular decomposition is often hard due to the heterogeneous or scale-free properties of PPI networks. METHODOLOGY/PRINCIPAL FINDINGS: To address this problem, we propose a diffusion model-based spectral clustering algorithm, which analytically solves the cluster structure of PPI networks as a problem of random walks in the diffusion process in them. To cope with the heterogeneity of the networks, the power factor is introduced to adjust the diffusion matrix by weighting the transition (adjacency) matrix according to a node degree matrix. This algorithm is named adjustable diffusion matrix-based spectral clustering (ADMSC). To demonstrate the feasibility of ADMSC, we apply it to decomposition of a yeast PPI network, identifying biologically significant clusters with approximately equal size. Compared with other established algorithms, ADMSC facilitates clear and fast decomposition of PPI networks. CONCLUSIONS/SIGNIFICANCE: ADMSC is proposed by introducing the power factor that adjusts the diffusion matrix to the heterogeneity of the PPI networks. ADMSC effectively partitions PPI networks into biologically significant clusters with almost equal sizes, while being very fast, robust and appealing simple

    Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combining multiple evidence-types from different information sources has the potential to reveal new relationships in biological systems. The integrated information can be represented as a relationship network, and clustering the network can suggest possible functional modules. The value of such modules for gaining insight into the underlying biological processes depends on their functional coherence. The challenges that we wish to address are to define and quantify the functional coherence of modules in relationship networks, so that they can be used to infer function of as yet unannotated proteins, to discover previously unknown roles of proteins in diseases as well as for better understanding of the regulation and interrelationship between different elements of complex biological systems.</p> <p>Results</p> <p>We have defined the functional coherence of modules with respect to the Gene Ontology (GO) by considering two complementary aspects: (i) the fragmentation of the GO functional categories into the different modules and (ii) the most representative functions of the modules. We have proposed a set of metrics to evaluate these two aspects and demonstrated their utility in <it>Arabidopsis thaliana</it>. We selected 2355 proteins for which experimentally established protein-protein interaction (PPI) data were available. From these we have constructed five relationship networks, four based on single types of data: PPI, co-expression, co-occurrence of protein names in scientific literature abstracts and sequence similarity and a fifth one combining these four evidence types. The ability of these networks to suggest biologically meaningful grouping of proteins was explored by applying Markov clustering and then by measuring the functional coherence of the clusters.</p> <p>Conclusions</p> <p>Relationship networks integrating multiple evidence-types are biologically informative and allow more proteins to be assigned to a putative functional module. Using additional evidence types concentrates the functional annotations in a smaller number of modules without unduly compromising their consistency. These results indicate that integration of more data sources improves the ability to uncover functional association between proteins, both by allowing more proteins to be linked and producing a network where modular structure more closely reflects the hierarchy in the gene ontology.</p

    GIBA: a clustering tool for detecting protein complexes

    Get PDF
    Background: During the last years, high throughput experimental methods have been developed which generate large datasets of protein - protein interactions (PPIs). However, due to the experimental methodologies these datasets contain errors mainly in terms of false positive data sets and reducing therefore the quality of any derived information. Typically these datasets can be modeled as graphs, where vertices represent proteins and edges the pairwise PPIs, making it easy to apply automated clustering methods to detect protein complexes or other biological significant functional groupings. Methods: In this paper, a clustering tool, called GIBA (named by the first characters of its developers' nicknames), is presented. GIBA implements a two step procedure to a given dataset of protein-protein interaction data. First, a clustering algorithm is applied to the interaction data, which is then followed by a filtering step to generate the final candidate list of predicted complexes. Results: The efficiency of GIBA is demonstrated through the analysis of 6 different yeast protein interaction datasets in comparison to four other available algorithms. We compared the results of the different methods by applying five different performance measurement metrices. Moreover, the parameters of the methods that constitute the filter have been checked on how they affect the final results. Conclusion: GIBA is an effective and easy to use tool for the detection of protein complexes out of experimentally measured protein - protein interaction networks. The results show that GIBA has superior prediction accuracy than previously published methods

    Objective sequence-based subfamily classifications of mouse homeodomains reflect their in vitro DNA-binding preferences

    Get PDF
    Classifying proteins into subgroups with similar molecular function on the basis of sequence is an important step in deriving reliable functional annotations computationally. So far, however, available classification procedures have been evaluated against protein subgroups that are defined by experts using mainly qualitative descriptions of molecular function. Recently, in vitro DNA-binding preferences to all possible 8-nt DNA sequences have been measured for 178 mouse homeodomains using protein-binding microarrays, offering the unprecedented opportunity of evaluating the classification methods against quantitative measures of molecular function. To this end, we automatically derive homeodomain subtypes from the DNA-binding data and independently group the same domains using sequence information alone. We test five sequence-based methods, which use different sequence-similarity measures and algorithms to group sequences. Results show that methods that optimize the classification robustness reflect well the detailed functional specificity revealed by the experimental data. In some of these classifications, 73–83% of the subfamilies exactly correspond to, or are completely contained in, the function-based subtypes. Our findings demonstrate that certain sequence-based classifications are capable of yielding very specific molecular function annotations. The availability of quantitative descriptions of molecular function, such as DNA-binding data, will be a key factor in exploiting this potential in the future.Canadian Institutes of Health Research (MOP#82940)Sickkids FoundationOntario Research FundNational Science Foundation (U.S.)National Human Genome Research Institute (U.S.) (R01 HG003985

    Prior knowledge based mining functional modules from Yeast PPI networks with gene ontology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the literature, there are fruitful algorithmic approaches for identification functional modules in protein-protein interactions (PPI) networks. Because of accumulation of large-scale interaction data on multiple organisms and non-recording interaction data in the existing PPI database, it is still emergent to design novel computational techniques that can be able to correctly and scalably analyze interaction data sets. Indeed there are a number of large scale biological data sets providing indirect evidence for protein-protein interaction relationships.</p> <p>Results</p> <p>The main aim of this paper is to present a prior knowledge based mining strategy to identify functional modules from PPI networks with the aid of Gene Ontology. Higher similarity value in Gene Ontology means that two gene products are more functionally related to each other, so it is better to group such gene products into one functional module. We study (i) to encode the functional pairs into the existing PPI networks; and (ii) to use these functional pairs as pairwise constraints to supervise the existing functional module identification algorithms. Topology-based modularity metric and complex annotation in MIPs will be used to evaluate the identified functional modules by these two approaches.</p> <p>Conclusions</p> <p>The experimental results on Yeast PPI networks and GO have shown that the prior knowledge based learning methods perform better than the existing algorithms.</p

    A gene expression atlas of the domestic pig

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This work describes the first genome-wide analysis of the transcriptional landscape of the pig. A new porcine Affymetrix expression array was designed in order to provide comprehensive coverage of the known pig transcriptome. The new array was used to generate a genome-wide expression atlas of pig tissues derived from 62 tissue/cell types. These data were subjected to network correlation analysis and clustering.</p> <p>Results</p> <p>The analysis presented here provides a detailed functional clustering of the pig transcriptome where transcripts are grouped according to their expression pattern, so one can infer the function of an uncharacterized gene from the company it keeps and the locations in which it is expressed. We describe the overall transcriptional signatures present in the tissue atlas, where possible assigning those signatures to specific cell populations or pathways. In particular, we discuss the expression signatures associated with the gastrointestinal tract, an organ that was sampled at 15 sites along its length and whose biology in the pig is similar to human. We identify sets of genes that define specialized cellular compartments and region-specific digestive functions. Finally, we performed a network analysis of the transcription factors expressed in the gastrointestinal tract and demonstrate how they sub-divide into functional groups that may control cellular gastrointestinal development.</p> <p>Conclusions</p> <p>As an important livestock animal with a physiology that is more similar than mouse to man, we provide a major new resource for understanding gene expression with respect to the known physiology of mammalian tissues and cells. The data and analyses are available on the websites <url>http://biogps.org and http://www.macrophages.com/pig-atlas</url>.</p
    corecore