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Abstract

Background: Recent advances in proteomic technologies have enabled us to create detailed protein-protein
interaction maps in multiple species and in both normal and diseased cells. As the size of the interaction dataset
increases, powerful computational methods are required in order to effectively distil network models from large-
scale interactome data.

Results: We present an algorithm, miPALM (Module Inference by Parametric Local Modularity), to infer protein
complexes in a protein-protein interaction network. The algorithm uses a novel graph theoretic measure,
parametric local modularity, to identify highly connected sub-networks as candidate protein complexes. Using gold
standard sets of protein complexes and protein function and localization annotations, we show our algorithm
achieved an overall improvement over previous algorithms in terms of precision, recall, and biological relevance of
the predicted complexes. We applied our algorithm to predict and characterize a set of 138 novel protein
complexes in S. cerevisiae.

Conclusions: miPALM is a novel algorithm for detecting protein complexes from large protein-protein interaction
networks with improved accuracy than previous methods. The software is implemented in Matlab and is freely
available at http://www.medicine.uiowa.edu/Labs/tan/software.html.

Background
Protein complexes carry out the majority of biological
processes within a cell. Correctly identifying protein
complexes in an organism is useful for deciphering the
molecular mechanisms underlying many cellular func-
tions. Recent advances in proteomics technologies such
as two-hybrid system and mass spectrometry has allowed
enormous amount of data on protein-protein interactions
(PPI) to be released into the public domain [1]. As the
amount of global high throughput protein interaction
data keeps increasing, methods for accurately identifying
protein complexes from such data become a bottleneck
for further analysis of the resulting interactome.
There is a large body of research on computational

methods for de novo protein complex detection in PPI
networks. These methods can be roughly divided into

three categories. Methods in the first group define explicit
complex criterion such as dense connectivity within a
complex. A heuristic search strategy is then employed to
identify complexes [2-4]. In contrast, the second group of
methods also define a complex criterion but use complete
enumeration to find all complexes that satisfy the criterion
[5-7]. Instead of using local search strategy, the third
group of methods are based on global graph partitioning
techniques [8-11]. For instance, maximization of the mod-
ularity (Q) measure proposed by Newman and Girvan [12]
has been successfully applied to PPI networks [11]. How-
ever, the global modularity measure has an inherent reso-
lution limit for detecting small sub-networks [13], such as
protein complexes whose median size is fewer than 10
proteins per complex. The reason for this resolution limit
is that global modularity uses the entire network to com-
pute the expected connectivity within a set of proteins,
which may not be an appropriate measure of the back-
ground around protein complexes. Muff et al. [9] intro-
duced a local version of the modularity measure (LQ) by
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only considering the immediate neighbors of a complex
instead of the entire network. Applying it to the PPI net-
work of E. coli, they showed that LQ was better at identify-
ing small but biologically meaningful protein complexes.
Q and LQ represent two extremes of the neighbor-

hood measure used to estimate background connectivity
in a random network. Neither may be optimal for a
given PPI network. In this study, we introduce a tunable
parameter into the original formulation of modularity to
help determine the optimal neighborhood size in calcu-
lating expected connectivity of a set of proteins. Another
drawback of the previous LQ approach is that the com-
putationally expensive optimization technique, simulated
annealing, was used to maximize LQ, which is not feasi-
ble for large PPI networks such as yeast or human net-
works although it was proven useful for the smaller
E. coli PPI network.
In this paper we introduce a novel algorithm to infer

protein complexes by combining a parametric local
modularity measure and a greedy search strategy. We
evaluate our approach on the yeast PPI networks using
two reference sets of protein complexes and additional
functional annotations of yeast proteins. Compared to
four existing methods, our algorithm achieves a signifi-
cantly performance improvement in terms of F-measure
and biological relevance of predicted complexes. By
applying our method to two large-scale PPI networks,
we predict a set of 138 novel protein complexes in the
baker’s yeast S. cerevisiae that warrant future experimen-
tal characterization.

Results
Local Modularity with Coarseness Parameter Improves
Complex Prediction
Previously, global (Q) [11] and local modularity (LQ) [9]
have been proposed as a measure to detect protein
complexes in large PPI networks. However, both mea-
sures have their drawbacks. The global modularity mea-
sure has an inherent resolution limit for small sub-
networks such as protein complexes [13]. The local
modularity measure only considers first neighbors of a
sub-network, which might not provide enough informa-
tion for estimating the true background connectivity
pattern of a random network. In this paper, we propose
a new local modularity measure, LQa (parametric local
modularity with the coarseness parameter a) for infer-
ring protein complexes in large PPI networks. To com-
pare how effective the three measures are to detect
protein complexes, we first implemented three complex
detection algorithms using a common greedy search
strategy and each of the three modularity measures as
the scoring function. We used the yeast full PPI net-
work from the DIP database [14] and two sets of gold
standard protein complex annotations (see Methods).

As shown in Figure 1, LQa performed the best in terms
of F-measure when evaluated using both gold standard
sets. Note that Q and LQ have no coarseness parameter
to set and the sets of predicted complexes are the same
for the two sets of known annotations. For LQa we set
the coarseness parameter to yield the best F-measure
for each set of known complexes.
The number and average size of the predicted com-

plexes are listed in Table 1. As expected, Q found a very
small number of complexes with a large number of
members, which caused a low recall rate and F-measure.
LQ further resolved those large sub-networks into a
number of smaller ones. However, the average size of
the predicted complexes (37.5) was still much larger
than the average size of known complexes (< 10). In
contrast, LQa found a reasonable number of complexes
in the same size range as the known complexes.

Putting All Together: the miPALM Algorithm
We introduce a novel algorithm, miPALM (module
inference by Parametric Local Modularity), for inferring
protein complexes from large-scale protein interactome
data. The input to miPALM consists of an un-weighted
PPI graph and two parameters, a and δ. The algorithm
has three major steps. Algorithmic details of each step
and the corresponding pseudo-code are described in the
Methods section. We briefly describe the major steps of
the algorithm here. First, from the input PPI network,
miPALM identifies a set of triangle seeds using topolo-
gical overlap measure. A pair of nodes in a network has
high topological overlap if they are both strongly con-
nected to the same group of nodes (see Methods).
Therefore, the use of topological overlap measure serves
to exclude spurious or isolated connections in the
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Figure 1 Performance comparison of three modularity
measures. The yeast DIP full network was used as input. Optimal
coarseness parameter, a, was optimized on three known complex
sets separately.
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network. Second, from each seed, the algorithm uses a
greedy search to expand it into candidate complex(es).
Local modularity is used as a scoring function to assess
the quality of a candidate complex. The parameter a is
used to control the background neighborhood size
around a candidate complex. Finally, a filtering step is
performed on the set of candidate complexes based on
their density scores which is controlled by the parameter
δ. The complete algorithm for complex prediction is
shown in Algorithm 4.

Performance Comparison with Existing Methods
Next, we compare the performance of our algorithm
with four representative algorithms for protein complex
prediction, MCODE [2], MCL [10], COACH [15], and
DME [7]. MCODE relies on the concept of K-core (a
sub-graph in which all nodes have a degree at least k)
and greedy search. MCL is a global graph partitioning
algorithm that works by simulating stochastic flows in a
graph. COACH is conceptually similar to MCODE. It
first identifies the core of a candidate complex (maximal
set of connected vertices whose degrees are greater than
the network average) and then expand the core by
including additional nodes if more than 50% of their
edges are shared with the core. DME detects all node
subsets that satisfy a user-defined minimum density
threshold in a greedy fashion. Of the five algorithms,
MCL cannot detect overlapping complexes whereas
MCODE, COACH, DME, and miPALM can. Addition-
ally, MCL is a global graph partitioning method whereas
the other four are based on seeding and local search.
We tested the performance of all five methods using

two sets of known complexes in the baker’s yeast, S. cer-
evisiae. CYC08 is a set of protein complexes manually
curated from published small-scale studies [16]. Since
most small-scale studies tend to be biased towards com-
plexes involved in a limited number of cellular pro-
cesses, to complement this set, we also used the
YHTP08 set of protein complexes [16]. It was con-
structed by analyzing two recent and most comprehen-
sive genome-wide protein complex screens based on
affinity purification coupled with mass spectrometry
experiment [17,18].

For performance comparison we determined the opti-
mal parameters for each algorithm to achieve the high-
est F-measure, given a gold standard set (see Methods).
The comparison results are presented in Figures 2 and 3
and Table 2. For each method, we report the precision,
recall, and F-measure. As can be seen in Figure 2A,
both COACH and miPALM achieved a much higher F-
measure compared to the other three methods. The
average F-measure was 0.42, 0.39, 0.23, 0.16, and 0.12
for COACH, miPALM, MCL, MCODE, and DME,
respectively.
Figure 2B shows a breakdown of the F-measure into

precision and recall for all five methods. On average,
MCL achieved the highest recall mainly due to its large
number of predictions. On the other hand, MCODE
achieved the highest precision because it tends to iden-
tify a subset of known complexes with higher overlap
than other methods. However, the overall accuracy of
both methods (as measured by the F-measure) was
lower than those of COACH and miPALM because
MCL had a much lower precision and MCODE had a
much lower recall. In other words, the higher F-measure
achieved by COACH and miPALM is due to a balanced
increase in both their recall and precision.
Although F-measure is a popular metric for evaluating

the performance of a complex predictor, it is not the only
one. Biological relevance is also an important indicator of
the quality of predicted complexes. Accordingly, we next
conducted GO term enrichment and co-localization ana-
lyses to determine the biological relevance of the pre-
dicted complexes. Genome-wide protein localization data
has been reported for Baker’s yeast using fluorescent
imaging [19]. For each predicted complex, we calculated
a log-odds score that measures the extent to which mem-
bers of the complex co-localize to the same sub-cellular
compartments (see Methods). Compared to the F-mea-
sure that relies on an incomplete gold standard set, both
GO term and co-localization annotations used here are
more comprehensive and thus complementary to the
F-measure.
At a p-value of 0.05, our set of predictions had the

highest fractions of complexes with enriched functional
categories (Figure 3A). Compared to the second best
performer (MCODE), the average increase in the frac-
tion of enriched complexes was 8.9% across the two
gold standard sets of complexes. For complex member
co-localization, our predictions had an 18.8% average
increase compared to the second best performer, DME
(Figure 3B).
Taken together, our benchmarking analyses demon-

strated that miPALM achieved the second highest F-
measure (3% lower than COACH) when evaluated using
known complexes. On the other hand, miPALM outper-
forms all other algorithms by a large margin (8.9% and

Table 1 Number and average size (arithmetic mean, in
parenthesis) of predicted complexes using three different
modularity measures and the DIP PPI network as input

Complex Annotation Modularity Measure

Q LQ LQa

CYC08: 236 (6.7) 27 (1877.6) 542 (37.5) 269 (4.7)

YHTP08: 207 (8.2) 262 (4.6)

Q, global modularity defined by Newman and Girvan [12]; LQ, first-neighbor
local modularity defined by Muff et al. [9]; LQa, parametric local modularity
defined in this study.
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18.8%) when evaluated using functional annotations of
complex members.

Novel Complex Predictions Using Large Yeast PPI
Networks
Next, we applied miPALM to discover novel protein
complexes in two large-scale yeast PPI networks based
on interactions obtained from the BioGRID database
[20]. The first network consists of all yeast interactions

in the BioGRID database. The majority of interactions
are derived from high throughput experiments. The sec-
ond network consists of high-confidence interactions
derived by filtering the BioGRID interactions based on
their lines of supporting evidence [21]. For brevity’s
sake, these two networks are termed BioGRID and HC
networks in this paper. The BioGRID network contains
5591 proteins and 51880 physical interactions and the
HC network contains 2228 proteins and 6209 physical
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Figure 3 Biological relevance of predicted complexes by five algorithms with optimized parameters and the DIP PPI network as input.
A) Percentage of complexes enriched for at least one GO term. B) Percentage of complexes whose members are co-localized in the same sub-
cellular compartment.
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Figure 2 Performance comparison of five complex detection algorithms. A) F-measure of the five algorithms with their best parameters
optimized to two sets of known complexes CYC08 and YHTP08 using the DIP network as input. B) Precision and recall of the methods. Circles,
F-measures measured against CYC08 (C) or YHTP08 (Y). Lines, F-measure contours. Two different points on the precision-recall plane can have
the same F-measure values if they lie on the same F-measure iso-line. The average F-measure of an algorithm, over the two gold standard sets,
is indicated with a star.
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interactions. By studying two networks with different
amount of noise, we can assess the robustness of our
method on noisy data.
To predict complexes, we set the coarseness para-

meter a to be 0.364 that gave the highest F-measure as
described in the performance comparison section.
In total, miPALM predicted 168 and 208 protein com-

plexes from the BioGRID and HC network, respectively.
The respective F-measures for the two sets of predic-
tions are 0.31 and 0.52 (Figure 4A). As expected, predic-
tions using HC network has a higher F-measure due to
the higher quality of the input data. Nevertheless, as
shown in Figure 5, the two sets of complexes overlap by
33.3% (56/168). To assess the significance of the overlap,
we also used the other four methods in the benchmark-
ing study to predict complexes in the BioGRID and HC
networks. We used the same optimized parameters for
each method as described in the performance compari-
son section. The two sets of complexes predicted by
COACH had the highest overlap of 43.3%. The average
overlap for the four methods was 26.6%. As an addi-
tional check, we considered miPALM predictions using
the DIP networks as input. The average overlap between
the three sets of predictions is 38.3% (Figures S6, S7 in
Additional file 1). Taken together, the high level of over-
lap between miPALM predictions suggests that it is
fairly robust against noisy data.
After merging overlapped complexes, we ended up

with 322 predicted complexes from the two networks.
Two hundred thirty two of these complexes (72.5%) are
enriched for at least one GO term (Table 3), suggesting
many of them are true protein complexes. Examined

separately, 109 (64.9%) BioGRID and 173 (83.2%) HC
predictions are enriched for at least one GO term,
respectively (Figure 4B).
To further corroborate our predictions, we next used a

genome-wide protein localization data set to examine if
members of our predicted complexes tend to co-localize
in the same sub-cellular compartments. For each of our
predicted complex, we calculated a co-localization log-
odds score that compares the member co-localization
probability of a predicted complex to the probability of
the same number of random proteins in the PPI network
(See Methods). For the set of 320 predicted complexes,
208 (65.0%) are enriched for at least one sub-cellular
compartments (Table 3). Examined separately, 115
(68.5%) BioGRID and 123 (62.0%) HC predictions are
enriched for at least one sub-cellular compartment,
respectively (Figure 4B).
To identify new complexes in our prediction, we used

the union of CYC08 and YHTP08 as the set of known
complexes. After filtering those complexes matching any
of the known complexes, we were left with 138 novel
protein complexes. To evaluate the quality of these novel
protein complexes, we computed the fraction of com-
plexes that have enriched GO functional terms or are co-
localized to the same sub-cellular compartments. Eight
five (61.6%) of the novel complexes were enriched for at
least one GO terms and 95 (68.8%) complexes were
enriched for at least one sub-cellular compartments
(Table 3). The fraction of GO term enriched complexes
was comparable to known complexes. Remarkably, the
fraction of co-localized complexes in our prediction was
much higher than those of the two gold standard sets
(Table 3). These results provide further evidence that the
set of novel complexes are true protein complexes. Infor-
mation about the complete set of predicted complexes
with supporting evidence is reported in Additional files 1,
2, 3 and 4.

Discussion
The global modularity measure proposed by Newman
and Girvan [12] identifies clusters (sub-networks) in a
network by comparing the observed fraction of edges
inside a cluster to the expected fraction of edges in the
cluster. In doing so, it assumes that connections
between all pairs of nodes in the network are equally
probable, which reflects all connectivity among all clus-
ters. However, in many molecular interaction networks,
most sub-networks are only connected locally. For
instance, in metabolic networks, major pathways occur
as clusters that are sparsely linked among each other
[22]. The same observation can also be made on protein
complexes [23].
In this study, we introduced parametric local modular-

ity as a new measure for the quality of clusters in a

Table 2 Statistics of predicted complexes by five
algorithms with the best parameters optimized on CYC08
and YHTP08 sets and the DIP PPI network as input

Algorithm Gold Standard Sets

(optimized parameters) CYC08 (236/6.7) YHTP08 (207/8.2)

COACH 271/113/7.3 271/95/7.3

(affinity threshold) (0.1) (0.1)

MCODE 57/25/12.9 57/18/12.9

(VWP) (0.2) (0.2)

MCL 830/123/5.9 830/115/5.9

(inflation) (1.75) (1.75)

DME 487/44/25.1 503/40/24.7

(density threshold) (0.97) (0.96)

miPALM 238/100/7.0 277/88/7.0

(a, δ) (0.364, 2.40) (0.374, 2.33)

Total number and average size of gold standard sets are shown in
parenthesis. The series of three numbers for each set of predictions are total
number of predictions, number of predicted complexes that overlap with
known complexes, and average size of predicted complexes. Optimized
parameters for each algorithm are shown in parenthesis following prediction
numbers.
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network. It takes into account local cluster connectivity
and overcomes global network dependency. As an ana-
logy, the coarseness parameter functions as the resolu-
tion dial of a microscope. By changing the value of the
coarseness parameter, we can adjust the size of the clus-
ter neighborhoods when calculating the expected frac-
tion of edges within a cluster. Since different biological
networks might have distinct neighborhood connectivity,
a tunable local modularity measure allow us to best esti-
mate the local neighborhood connectivity by changing
the size of the neigbhorhood under consideration.
Protein complexes are dynamic molecular entities.

Depending on the cellular states, membership of a

protein complex could change and different complexes
could have shared members [18]. Our algorithm can
detect overlapping complexes if during the seed expan-
sion step seeds of different candidate complexes are
close enough.
The F-measure used for performance evaluation is a

popular approach. A drawback of F-measure is that it
cannot distinguish whether a predicted complex overlap
with just one or multiple known complexes and vice
versa. It has been argued that predictions that overlap
with fewer known complexes should be regarded as hav-
ing a higher quality [24]. To further evaluate the meth-
ods using this criterion, we use the separation metric
introduced by Brohee and van Helden [24] which takes
into account the observation above. As shown in Figure
S8 (Additional file 1), miPALM again outperforms the
other methods. Therefore, it is unlikely that the perfor-
mance improvement by miPALM is due to a bias in the
benchmarking metrics used.
In summary, using three alternative performance mea-

sures (F-measure, Biological Relevance, Separation), our
benchmarking analysis demonstrate that miPALM
achieve an overal best performance among the five

Figure 4 F-measure and biological relevance of predicted complexes using two large-scale PPI networks as inputs. A) F-measures.
Circles, F-measures measured against CYC08 (C) or YHTP08 (Y) using the BioGRID network as input. Squares, F-measures measured against
CYC08 (C) or YHTP08 (Y) using the HC network as input. B) Fraction of predicted complexes enriched for GO term and colocalization.
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Figure 5 Overlap between miPALM predicted complexes using
two large-scale PPI networks as inputs. A) Overlap between
protein members in the predicted complexes. B) Overlap between
complexes. C) Overlap between novel complexes. Blue, predicted
complexes using HC PPI network; Red, predicted complexes using
BioGRID PPI network.

Table 3 Supporting evidence for novel complexes
predicted by miPALM compared to gold standard sets of
known complexes

CYC08
(%)

YHTP08
(%)

miPALM All
(%)

miPALM Novel
(%)

GO 76.7 56.5 72.5 61.6

Colocalization 25.9 43.0 65.0 68.8

BioGRID and HC PPI networks were used as the input. GO, gene ontology.
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algorithms compared. The performance measures of the
methods using three input interaction networks are
summarized in Additional file 1, Tables S4, S5, S6.
The proposed algorithm can be naturally extended to

handle weighted networks by using edge weights for
local modularity calculation. Edge weights can be calcu-
lated based on topological features of the PPI network
and domain-specific information from other omic data,
such as microarray gene expression, genome-wide asso-
ciation study, and genome-wide sequence mutation data
(e.g. cancer mutation screening). Integration of func-
tional genomic data into miPALM will enable us to find
context-dependent sub-networks that are active under
specific growth conditions.

Conclusions
Using several performance measures (F-measure, Bio-
logical Relevance, and Separation), we have demon-
strated that miPALM achieved an overall improvement
over previous algorithms. miPALM combines the
strength of three key features, triangle seed identifica-
tion using topological overlap measure, parametric
local modularity as a cluster quality measure, and
recursive greedy search. By including functional geno-
mic data as edge weights, miPALM can be extended to
identify context-dependent gene modules that can in
turn be used to assist in network comparison and clas-
sification tasks.

Methods
Protein interaction and complex data
Protein interaction networks
Yeast protein-protein interaction data were downloaded
from the DIP [14] and BioGRID [20] databases. The DIP
“full” set of PPIs (including all physical interactions in the
DIP database instead of a subset of high confidence inter-
actions) were used for algorithm development and com-
parison. The BioGRID and high-confidence [21] sets of
PPIs were used for novel protein complex prediction.
After removing self-loops and multiple edges, the three
networks contain 4859, 5591, and 2228 proteins and
17138, 51880, and 6209 interactions, respectively.
Known annotated protein complexes
Two sets of annotated protein complexes were used for
performance evaluation. Pu et al. generated a compre-
hensive catalogue of 408 protein complexes manually
curated from published small-scale experiments
reported as of 2008 [16]. This set provides an update of
the widely used gold-standard MIPS complexes. In the
same study, they also generated a catalogue of 400 high-
throughput complexes by a systematic analysis of all
high throughput protein-protein interaction data
reported as of 2008. After removing complexes with

fewer than 3 members, we ended up with two reference
sets of protein complexes, termed CYC08 (236 com-
plexes) and YHTP08 (207 complexes), respectively.

Construction of the seed set
Seeding strategy is crucial for a network searching algo-
rithm since the search result is dependent on the start-
ing point (e.g. a node, an edge, or a sub-network). Here
we describe how to construct seeds and to rank them
based on the local property of the network.
First, we weight every interaction in the PPI network.

For discovering good seeds, it is important to rank
within-complex edges high and between-complex edges
low. We used a modified version of the topological
overlap measure by Ravasz et al. [25] as edge weight. It
is defined as following:

O v w A v w k kT vw v w( , ) ( , ) / ( ) /= ⋅ +Γ 2 (1)

where |Γ(v, w)| is the number of common neighbors
of node v and w, kv and kw are the degrees of node v
and w, Avw = 1 if v and w have a direct link and zero
otherwise.
In the original definition of OT (v, w), the number of

shared interacting partners is normalized by dividing
|Γ(v, w)| by min(kv, kw) instead of (kv + kw)/2. We modi-
fied the normalization factor because it is improper to
treat two proteins topologically equal if one protein has
three interactors and the other has 100 interactors (e.g.
hub proteins) even though these two proteins share the
same three interacting partners.
Second, we enumerated all triangles in the PPI net-

work using the enumeration algorithm described in
Algorithm 1. All triangles in the PPI network can be
located by Algorithm 1 in O(kmax·m) time with an
upper bound of O(n·m), where kmax is the largest node
degree in the network.
Algorithm 1: TriangleEnumeration (G)
1 input: Unweighted graph G = (V, E)
2 output: all triangles of G
3 begin
4 for e ∈ E do
5 (v, w)  a pair of nodes connected by e
6 Γ (v, w)  a set of common nodes shared by

v and w
7 for x ∈ Γ(v, w) do
8 output triplet {v, w, x}
9 remove e from G
10 end
We then rank all triangles found by Algorithm 1

based on their triangle-weights obtained by averaging
pair-wise edge weights.
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Local modularity as the scoring function
The total modularity Q of a network with M modules is
defined as following [12]:
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where m is the total number of edges in the network,
mss is the number of intra-module edges in module S,
and ds is the sum of the degrees of nodes in module S.
Essentially, Q is the difference in the fraction of within-
module edges between the observed network and a ran-
dom configuration network model. This definition of
modularity is global in the sense that the comparison of
mss/m with (ds/2m)2 assumes equal probability of con-
nection between any pair of nodes in the random net-
work model.
During module search, when a node v and a sub-net-

work S are merged, the change in global modularity can
be derived, as followings,

ΔQ v S Q Q Q
m

m
d d

mvS v S vS
v S( , ) ( )= − + = −⎛

⎝⎜
⎞
⎠⎟

1
2

 (3)

where Qv and QS are the modularity of v and S,
respectively and QvS is the modularity of the sub-net-
work created by merging v and S.
In order to overcome the resolution limit of the global

modularity measure, Muff et al. proposed the local
modularity measure LQ [9]

LQ
m

m

d

m
ss

s

s

ss

M
= −

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=∑ 2

2

1
 (4)

where mss is the number of edges within sub-network
S and ms is the total number of edges in S and its first
neighbours. LQ is based on the observation that in real
world networks most sub-networks are only connected
to a small fraction of the entire network.
Inspired by previous work, we introduce a new local

modularity measure for a single subnetwork as defined
below:

LQ
m

m

d

m
SS S

  = − ⎛
⎝⎜

⎞
⎠⎟

≤ ≤+2
0 11 2

2

( )/ , (5)

where the denominator of the second term in Eq. 4 is
not fixed to 2m, but varied with a parameter a that we
call the coarseness parameter.
After merging v and S the change in the newly defined

local modularity is then:

ΔLQ v S
m

m
d d

m
vS

v S
  ( , ) ,= −⎛

⎝⎜
⎞
⎠⎟

≤ ≤1

2
0 1 (6)

Readers are referred to the Suppl. Methods (Addi-
tional file 1) for detailed derivation of ΔLQa from LQa

When a = 1, ΔLQa is equivalent to ΔQ in Eq. 3.
Decreasing a leads to a smaller number of edges to be
considered. For example, if a = 0.5, the ratio of consid-
ered edges to the total number of edges in the network
(i.e. edge-coverage ratio, r= 2ma /2m )) is m-1/2. Conver-
sely, if we want to cover locally 50% of edges (r = 0.5),
then a can be set to 1+logm(0.5). As a goes down to
zero, the size of the detected sub-network becomes
smaller and smaller because the expected fraction of
within-module edges, the second term in Eq. 5, becomes
larger. Suppl. Figure S1 (Additional file 1) shows the
edge-coverage ratio and size of resultant detected sub-
networks as a function of a.

Greedy search by maximizing local modularity measure
The problem of finding a network partition with maxi-
mum global modularity is known to be NP-hard [26].
Thus, various heuristic approaches were proposed
[27-32]. In particular, greedy search [31,32] based on
global modularity have been studied extensively due to
its single peakness [33] and fast speed for analyzing very
large networks.
Our scoring function (Eq. 5) made it possible to adopt

a greedy search strategy to expand a given triangle seed
to a larger sub-network iteratively until the increase in
local modularity becomes negative. Pseudo codes for
our greedy search algorithm are shown in Algorithms 2
and 3. Briefly, starting with the top ranked triangle seed
{x, y, z}, our greedy algorithm always merge the direct
neighbor w of the seed that increases local modularity
the most, growing the seed into a larger sub-network S=
{w, x, y, z}. The algorithm outputs S if it has no addi-
tional neighbor merging of which leads to an increase in
the local modularity. This searching process (or seed
expansion) is then repeated with a new seed. The time-
consuming step of the greedy search algorithm is the
calculation of ΔLQa after each merging. We avoid recal-
culating ΔLQa(v, S’) for all neighbours of S’, v∈Ns’ by
taking advantage of the recursive relationship for ΔLQa

between before and after merging (see Suppl. Methods
and Figure S3 for details, Additional file 1). The upper
bound for the time complexity of our search algorithm
is O(ns·ds) where ns is the number of proteins in the
sub-network S and ds is the sum of degrees of all nodes
in the sub-network S.
Algorithm 2: RecursiveGreedySearch (S, A, a)
1 input: triangle seed S, adjacency matrix A, and

coarseness parameter a
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2 output: Expanded sub-network S’ and its neighbor
nodes Ns’

3 begin
Ns  neighbor nodes of S

5 ΔLQa (·, S)  change in our local modularity for
all v in Ns

6 if max((ΔLQa (·, S)) < 0 then
7 return S and Ns

8 [S’, Ns’]  GrowSeed(S, A, Ns, a, ΔLQa (·, S))
9 return S’ and Ns’

10 end
Algorithm 3: GrowSeed (S, A, Ns, a, ΔLQa (·,S))
1 input: triangle seed S, adjacency matrix A, a set of

neighbor nodes of S Ns, coarseness parameter a, change
in local modularity ΔLQa (v, S) for all v in Ns

2 output: Expanded sub-network S’ and its neighbor
nodes Ns’

3 begin

4 v arg max LQ v S
v

* { ( , )}← Δ 

5 Nv*  all neighbor nodes of v*
6 S’  {S, v*}

7 N N v N N S v N vs s v s s′ ← − ∪ − ∈ −∪( { }) ( ( )), { }*
*

* 

8 Δ Δ ΔLQ v s LQ v S LQ v v v N N Sa a v s( , ) ( , ) ( , ), ( )*
*

′ ← + ∈ − ∪ 

9 Δ ΔLQ v S
d d

m
LQ v va

v s( , ) ( , )*′
+← − +

2 1 

10 if max (ΔLQa (·,S’)) < 0 then
11 return S’ and Ns’

12 S N GrowSeed S A N LQ Ss s’, ( ’, , , , ( , ’))’ ’[ ] ← Δ ⋅    

13 end

Elimination of unpromising seeds
Unpromising seeds are those that cannot be expanded
into larger sub-networks. In other words, they are trian-
gles that have no neighbors that can cause positive
change in local modularity if merged. We filtered out
those triangles after seed expansion step to speed up the
algorithm and reduce the number of false positives (see
Figure S2 in Additional file 1).

Complex merging
Proteins in a PPI network could belong to one or more
protein complexes simultaneously. This multiple mem-
bership of proteins should be uncovered by the cluster-
ing algorithm. Complexes found by our method can be
overlapped if they are within the same densely con-
nected region in the PPI network. While revealing over-
lapped complexes is important for understanding their
dynamics, allowing algorithm to make overlapped pre-
dictions often produce an excessive number of com-
plexes. For example, the algorithm DME [7] predicted
14,780 complexes (minimum density threshold 0.95) on

the yeast DIP full set. The majority of them are over-
lapped, causing low precision and poor overall perfor-
mance. In this paper we merged any two complexes S
and T if they have an overlap score of greater than 0.5,
which is defined as |S ⋂ T|/min(|S|, |T|).

Complex filtering by density score
After merging complexes produced by the seed expan-
sion step, we rank the candidate complexes by their
density score δs that is defined as the product of the
connectivity and size of complex

S
m

n n
ns

ss

s s
s,

( ) /
 =

−
⋅

1 2
.

The miPALM algorithm
Our algorithm takes as input an unweighted PPI net-
work Gn, m={V, E} with n nodes and m edges and out-
puts a set of predicted protein complexes, M. The
pseudo code of the algorithm is shown in Algorithm 4.
Algorithm 4: miPALM (G, a, δ)
1 Input: Unweighted graph Gn, m ={V, E}, n=/V/,

m=/E|, coarseness parameter a, and density score
threshold δ
3 Output: a set of sub-networks, M
4 begin
5 T  TriangleEnumeration (G)
6 t  choose the top ranked triad-seed in T
7 T  delete t from list T
8 while T is not empty do
9 S  RecursiveGreedySearch (t, A, a)
10 t  choose the top triad-seed uncovered by

the previous search
11 T  delete t from list T
12 if the size of S is three then
13 continue
14 S  refine S by looking around S
15 M  {M, S}, output S
16 S  merge sub-networks in S
17 for S ∈ M do
18 δs  get density score f S
19 if δs <δ then
20 delete S from M
21 end

Performance evaluation
We used the F-measure to evaluate the performance of
complex prediction algorithms. F-measure is the harmo-
nic mean of the two quantities, precision (Pre) and
recall (Rec), 2 Pre Rec/(Pre + Rec). Precision is defined
as the ratio of the number of matched sub-networks to
the number of predicted sub-networks by each algo-
rithm. Recall is the ratio of the number of matched sub-
networks to the number of known complexes.
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For comparison purpose, we used the complex match-
ing criterion used in MCODE [2] to identify predicted
complexes that overlap with gold standard complexes. A
predicted sub-network is considered matched to a
known complex if it has a matching score of 0.2 or
greater. Matching score is defined as ω = c2/a·b, where
a, b are the size of the sub-network and the known
complex, respectively, and c is the number of protein
members overlapped between the prediction and the
known complex. We also examine the precision and
recall rates at different overlap scores (see Figure S9 in
Additional file 1).

Parameter selection
Our algorithm has two parameters, a for determining
the size of the local neighborhood of a candidate com-
plex and δ for filtering candidate complexes based on
their density score. For benchmarking purpose, we used
the F-measure to determine the parameters yielding the
best performance of the algorithm on three sets of
known complex. Because the δ parameter is only used
for post-search filtering, we first searched for the opti-
mal a value. We varied a from 0 to 1 with an initial
step size of 0.01. Once the range of optimal a value was
located, we further searched for the optimal parameter
value using a finer step size of 0.001 (Figure S4 in Addi-
tional file 1). After an optimal a was found, we deter-
mined the optimal δ by searching from 0 to 3.5 with a
step size of 0.01. To determine the sensitivity of the
algorithm to parameter changes, we determined the
overlaps between predicted complexes using two a
values differed by 0.01. As can be seen in Figure S5
(Additional file 1), our algorithm is not overly sensitive
to parameter changes.
For the other four programs we compared, we tested

the following parameter ranges that gave optimal F-
measure on the three sets of known complexes. For
COACH, the affinity threshold was varied from 0 to 1
with a step size of 0.01. For MCL, the inflation para-
meter was varied from 1.2 to 5.0 with a step size of
0.01. For DME, the density threshold parameter was
varied from 0.91 to 1.0 with a step size of 0.01. For
MCODE, vertex weight percentage = 0.2, haircut =
TRUE, and fluff = FALSE were used. These parameters
of MCODE have been optimized to produce the best
results by default.

Gene ontology term enrichment test
Yeast Gene Ontology (GO) slim terms were used to
evaluate the biological relevance of predicted complexes.
P-value for GO term enrichment was calculated using
the hypergeometric distribution. A Bonferroni-corrected
p-value of 0.05 is considered to be significant.

Co-localization analysis
Based on fluorescence imaging, Huh et al. [19] classified
75% of the yeast proteome into 22 distinct sub-cellular
compartments. Protein localization data was down-
loaded from the yeast GFP fusion localization database
http://yeastgfp.yeastgenome.org. To compute a log-odds
score of complex sub-cellular localization, we compared
the observed number of protein pairs within a sub-net-
work S that are co-localized to sub-cellular compart-
ment k (msk) to the expected number of such pairs in a

random network msk , defined as following,

m
n n

psk
sk sk

s= − ⋅( )1
2

and

p m n ns ss s s= ⋅ ( )2 1/

where nsk is the number of proteins localized in com-
partment k in sub-network S and ps is the connectivity
for the sub-network. We consider a complex to be loca-
lized to a compartment k if the log-odds score

log m
m

sk

sk
( ) > 0 .
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