360 research outputs found

    Stellar mass functions of galaxies, disks and spheroids at z~0.1

    Full text link
    We present the stellar mass functions (SMF) and mass densities of galaxies, and their spheroid and disk components in the local (z~0.1) universe over the range 8.9 <= log(M/M_solar) <= 12 from spheroid+disk decompositions and corresponding stellar masses of a sample of over 600,000 galaxies in the SDSS-DR7 spectroscopic sample. The galaxy SMF is well represented by a single Schechter function (M* = 11.116+/-0.011, alpha = -1.145+/-0.008), though with a hint of a steeper faint end slope. The corresponding stellar mass densities are (2.670+/-0.110), (1.687+/-0.063) and (0.910+/-0.029)x10^8 M_solar Mpc^-3 for galaxies, spheroids and disks respectively. We identify a crossover stellar mass of log(M/M_solar) = 10.3+/-0.030 at which the spheroid and disk SMFs are equal. Relative contributions of four distinct spheroid/disk dominated sub-populations to the overall galaxy SMF are also presented. The mean disk-to-spheroid stellar mass ratio shows a five fold disk dominance at the low mass end, decreasing monotonically with a corresponding increase in the spheroidal fraction till the two are equal at a galaxy stellar mass, log(M/M_solar)=10.479+/-0.013, the dominance of spheroids then grows with increasing stellar mass. The relative numbers of composite disk and spheroid dominated galaxies show peaks in their distributions, perhaps indicative of a preferred galaxy mass. Our characterization of the low redshift galaxy population provides stringent constraints for numerical simulations to reproduce.Comment: 30 pages, 18 figures, 5 tables (2 online), Accepted for publication in MNRA

    Star Formation in a Stellar Mass Selected Sample of Galaxies to z=3 from the GOODS NICMOS Survey (GNS)

    Get PDF
    We present a study of the star-forming properties of a stellar mass-selected sample of galaxies in the GOODS NICMOS Survey (GNS), based on deep Hubble Space Telescope imaging of the GOODS North and South fields. Using a stellar mass selected sample, combined with HST/ACS and Spitzer data to measure both UV and infrared derived star formation rates (SFR), we investigate the star forming properties of a complete sample of ~1300 galaxies down to log M*=9.5 at redshifts 1.5<z<3. Eight percent of the sample is made up of massive galaxies with M*>10^11 Msun. We derive optical colours, dust extinctions, and ultraviolet and infrared SFR to determine how the star formation rate changes as a function of both stellar mass and time. Our results show that SFR increases at higher stellar mass such that massive galaxies nearly double their stellar mass from star formation alone over the redshift range studied, but the average value of SFR for a given stellar mass remains constant over this 2 Gyr period. Furthermore, we find no strong evolution in the SFR for our sample as a function of mass over our redshift range of interest, in particular we do not find a decline in the SFR among massive galaxies, as is seen at z < 1. The most massive galaxies in our sample (log M*>11) have high average SFRs with values, SFR(UV,corr) = 103+/-75 Msun/yr, yet exhibit red rest-frame (U-B) colours at all redshifts. We conclude that the majority of these red high-redshift massive galaxies are red due to dust extinction. We find that A(2800) increases with stellar mass, and show that between 45% and 85% of massive galaxies harbour dusty star formation. These results show that even just a few Gyr after the first galaxies appear, there are strong relations between the global physical properties of galaxies, driven by stellar mass or another underlying feature of galaxies strongly related to the stellar mass.Comment: 18 pages, 10 figures, accepted for publication in MNRA

    The Dynamics of Galaxy Pairs in a Cosmological Setting

    Full text link
    We use the Millennium Simulation, and an abundance-matching framework, to investigate the dynamical behaviour of galaxy pairs embedded in a cosmological context. Our main galaxy-pair sample, selected to have separations under 250 kpc/h, consists of over 1.3 million pairs at redshift z = 0, with stellar masses greater than 10^9 Msun, probing mass ratios down to 1:1000. We use dark matter halo membership and energy to classify our galaxy pairs. In terms of halo membership, central-satellite pairs tend to be in isolation (in relation to external more massive galaxies), are energetically- bound to each other, and are also weakly-bound to a neighbouring massive galaxy. Satellite-satellite pairs, instead, inhabit regions in close proximity to a more massive galaxy, are energetically-unbound, and are often bound to that neighbour. We find that 60% of our paired galaxies are bound to both their companion and to a third external object. Moreover, only 9% of our pairs resemble the kind of systems described by idealised binary merger simulations in complete isolation. In sum, we demonstrate the importance of properly connecting galaxy pairs to the rest of the Universe.Comment: 25 pages, 14 figures, accepted by MNRA

    The ALMaQUEST survey – III. Scatter in the resolved star-forming main sequence is primarily due to variations in star formation efficiency

    Get PDF
    Using a sample of 11,478 spaxels in 34 galaxies with molecular gas, star formation and stellar maps taken from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the parameters that correlate with variations in star formation rates on kpc scales. We use a combination of correlation statistics and an artificial neural network to quantify the parameters that drive both the absolute star formation rate surface density (Sigma_SFR), as well as its scatter around the resolved star forming main sequence (Delta Sigma_SFR). We find that Sigma_SFR is primarily regulated by molecular gas surface density (Sigma_H2) with a secondary dependence on stellar mass surface density (Sigma_*), as expected from an `extended Kennicutt-Schmidt relation'. However, Delta Sigma_SFR is driven primarily by changes in star formation efficiency (SFE), with variations in gas fraction playing a secondary role. Taken together, our results demonstrate that whilst the absolute rate of star formation is primarily set by the amount of molecular gas, the variation of star formation rate above and below the resolved star forming main sequence (on kpc scales) is primarily due to changes in SFE

    Mapping galaxy encounters in numerical simulations: The spatial extent of induced star formation

    Get PDF
    We employ a suite of 75 simulations of galaxies in idealised major mergers (stellar mass ratio ~2.5:1), with a wide range of orbital parameters, to investigate the spatial extent of interaction-induced star formation. Although the total star formation in galaxy encounters is generally elevated relative to isolated galaxies, we find that this elevation is a combination of intense enhancements within the central kpc and moderately suppressed activity at large galacto-centric radii. The radial dependence of the star formation enhancement is stronger in the less massive galaxy than in the primary, and is also more pronounced in mergers of more closely aligned disc spin orientations. Conversely, these trends are almost entirely independent of the encounter's impact parameter and orbital eccentricity. Our predictions of the radial dependence of triggered star formation, and specifically the suppression of star formation beyond kph-scales, will be testable with the next generation of integral-field spectroscopic surveys.Comment: 12 pages, 8 figures, accepted by MNRA

    Bulge mass is king: The dominant role of the bulge in determining the fraction of passive galaxies in the Sloan Digital Sky Survey

    Full text link
    We investigate the origin of galaxy bimodality by quantifying the relative role of intrinsic and environmental drivers to the cessation (or `quenching') of star formation in over half a million local Sloan Digital Sky Survey (SDSS) galaxies. Our sample contains a wide variety of galaxies at z=0.02-0.2, with stellar masses of 8 < log(M*/M_sun) < 12, spanning the entire morphological range from pure disks to spheroids, and over four orders of magnitude in local galaxy density and halo mass. We utilise published star formation rates and add to this recent GIM2D photometric and stellar mass bulge + disk decompositions from our group. We find that the passive fraction of galaxies increases steeply with stellar mass, halo mass, and bulge mass, with a less steep dependence on local galaxy density and bulge-to-total stellar mass ratio (B/T). At fixed internal properties, we find that central and satellite galaxies have different passive fraction relationships. For centrals, we conclude that there is less variation in the passive fraction at a fixed bulge mass, than for any other variable, including total stellar mass, halo mass, and B/T. This implies that the quenching mechanism must be most tightly coupled to the bulge. We argue that radio-mode AGN feedback offers the most plausible explanation of the observed trends.Comment: Accepted to MNRAS. 32 pages, 27 figures. [This version is virtually identical to v1

    Gas Accretion as a Dominant Formation Mode in Massive Galaxies from the GOODS NICMOS Survey

    Full text link
    The ability to resolve all processes which drive galaxy formation is one of the most fundamental goals in extragalactic astronomy. While star formation rates and the merger history are now measured with increasingly high certainty, the role of gas accretion from the intergalactic medium in supplying gas for star formation still remains largely unknown. We present in this paper indirect evidence for the accretion of gas into massive galaxies with initial stellar masses M_*>10^{11} M_sol and following the same merger adjusted co-moving number density at lower redshifts during the epoch 1.5 < z < 3, using results from the GOODS NICMOS Survey (GNS). We show that the measured gas mass fractions of these massive galaxies are inconsistent with the observed star formation history for the same galaxy population. We further demonstrate that this additional gas mass cannot be accounted for by cold gas delivered through minor and major mergers. We also consider the effects of gas outflows and gas recycling due to stellar evolution in these calculations. We argue that to sustain star formation at the observed rates there must be additional methods for increasing the cold gas mass, and that the likeliest method for establishing this supply of gas is by accretion from the intergalactic medium. We calculate that the average gas mass accretion rate into these massive galaxies between 1.5 < z < 3.0, is \dot{M} = 96+/-19 M_sol/yr after accounting for outflowing gas. We show that during this epoch, and for these very massive galaxies, 49+/-20% of baryonic mass assembly is a result of gas accretion and unresolved mergers. However, 66+/-20% of all star formation in this epoch is the result of gas accretion. This reveals that for the most massive galaxies at 1.5< z< 3 gas accretion is the dominant method for instigating new stellar mass assembly.Comment: MNRAS in press, 11 pages, 5 figure

    What shapes a galaxy? - Unraveling the role of mass, environment and star formation in forming galactic structure

    Get PDF
    We investigate the dependence of galaxy structure on a variety of galactic and environmental parameters for ~500,000 galaxies at z<0.2, taken from the Sloan Digital Sky Survey data release 7 (SDSS-DR7). We utilise bulge-to-total stellar mass ratio, (B/T)_*, as the primary indicator of galactic structure, which circumvents issues of morphological dependence on waveband. We rank galaxy and environmental parameters in terms of how predictive they are of galaxy structure, using an artificial neural network approach. We find that distance from the star forming main sequence (Delta_SFR), followed by stellar mass (M_*), are the most closely connected parameters to (B/T)_*, and are significantly more predictive of galaxy structure than global star formation rate (SFR), or any environmental metric considered (for both central and satellite galaxies). Additionally, we make a detailed comparison to the Illustris hydrodynamical simulation and the LGalaxies semi-analytic model. In both simulations, we find a significant lack of bulge-dominated galaxies at a fixed stellar mass, compared to the SDSS. This result highlights a potentially serious problem in contemporary models of galaxy evolution.Comment: Accepted to MNRAS. 31 pages, 15 figure
    corecore