16 research outputs found

    Randomized, double-blind, placebo-controled clinical trial of sublingual immunotherapy in natural rubber latex allergic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural rubber latex allergy is a common and unsolved health problem. Since the avoidance of exposure is very difficult, immunotherapy is strongly recommended, but before its use in patients, it is essential to prove the efficacy and safety of extracts.</p> <p>The aim of the present randomised, double-blind, placebo-controlled clinical trial was to assess the efficacy and tolerability of latex sublingual immunotherapy in adult patients undergoing permanent latex avoidance.</p> <p>Methods</p> <p>Twenty-eight adult latex-allergic patients (5 males and 23 females), with mean age of 39 years (range 24-57) were randomized to receive a commercial latex-sublingual immunotherapy or placebo during one year, followed by another year of open, active therapy. The following outcomes were measured at baseline and at the end of first and second year of follow-up: skin prick test, gloves-use score, conjunctival challenge test, total and specific IgE, basophil activation test, and adverse reactions monitoring.</p> <p>Results</p> <p>No significant difference in any of the efficacy <it>in vivo </it>variables was observed between active and placebo groups at the end of the placebo-controlled phase, nor when each group was compared with their baseline values at the end of the two year-study. An improvement in the average percentage of basophils activated was observed. During the induction phase, 4 reactions in the active group and 5 in the placebo group were recorded. During the maintenance phase, two patients dropped out due to pruritus and to acute dermatitis respectively.</p> <p>Conclusion</p> <p>Further studies are needed to evaluate latex-sublingual immunotherapy, since efficacy could not be demonstrated in adult patients with avoidance of the allergen.</p> <p>Trial registration number</p> <p><a href="http://www.anzctr.org.au/ACTRN12611000543987.aspx">ACTRN12611000543987</a></p

    Purinergic modulation of microglial cell activation

    Get PDF
    Microglial cells are resident macrophages in the brain and their activation is an important part of the brain immune response and the pathology of the major CNS diseases. Microglial activation is triggered by pathological signals and is characterized by morphological changes, proliferation, phagocytosis and the secretion of various cytokines and inflammatory mediators, which could be both destructive and protective for the nervous tissue. Purines are one of the most important mediators which regulate different aspects of microglial function. They could be released to the extracellular space from neurons, astrocytes and from the microglia itself, upon physiological neuronal activity and in response to pathological stimuli and cellular damage. Microglial activation is regulated by various subtypes of nucleotide (P2X, P2Y) and adenosine (A1, A2A and A3) receptors, which control ionic conductances, membrane potential, gene transcription, the production of inflammatory mediators and cell survival. Among them, the role of P2X7 receptors is especially well delineated, but P2X4, various P2Y, A1, A2A and A3 receptors also powerfully participate in the microglial response. The pathological role of microglial purine receptors has also been demonstrated in disease models; e.g., in ischemia, sclerosis multiplex and neuropathic pain. Due to their upregulation and selective activation under pathological conditions, they provide new avenues in the treatment of neurodegenerative and neuroinflammatory illnesses

    Identification of Races 0 and 2 of Cladosporium fulvum (syn Passalora fulva) on Tomato in the Cinturón Hortícola de La Plata, Argentina

    Get PDF
    Surveys aimed at evaluating the incidence and severity of a new disease that developed in greenhouses cultivated with tomato (Solanum lycopersicum L.) were performed during 2009 and 2010 in greenhouses of the cultivars Elpida (Enza Zaden) and Colibrí (Clause) in an area of tomato production known as the Cinturón Hortícola de La Plata (the “horticultural belt of La Plata”). The disease had a 100% prevalence and 90% incidence within the ten 250 m2 greenhouses that were monitored in 2009, 2010, and 2011. In two consecutive assays, severity was 40%. The wide distribution of the disease suggests that the tomato hybrids under use lack resistance genes. The upper surface of diseased leaves had pale green to yellowish, 1- to 1.5-cm spots with undefined margins that progressed to a yellowish brown color, while on the lower side they had pale brown to brown sporulation of fungal conidiophores and conidia. Monosporic fungal cultures were obtained by needle transfer of conidia from sporulating areas of leaves (n = 20) to water agar medium. On 2% potato dextrose agar (PDA) the colonies of the relatively low growing fungus were strongly pigmented, greenish grey, and black on the reverse of the plate. The fungus developed one-celled, pale olive-green, ovoid conidia on long, branched chains, which arose from pigmented conidiophores, corresponding to the description of Cladosporium fulvum made by Joosten and de Wit (1). The identity of two isolates was confirmed by amplifying the 580-bp ITS sequences by means of primers ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) and ITS5 (5′-GAATTCGGAAGTAAAAGTCGTAACAAGG-3′) (ITS sequence Race 0 JQ768324.1 and Race 2 JQ768325.1). Both were 100% homologous to the ITS sequences of C. fulvum strains ATCC44962 (AF393700) and ATCC44960 (AF303701). Monosporic cultures of four isolates, each obtained from leaves collected from different plants growing in different greenhouses, were inoculated on a set of differential genotypes of tomato: cvs. Moneymaker, Cf-0, Cf-2, Cf-4, Cf-5, and Cf-9 (kindly provided by the Laboratory of Phytopathology of Wageningen University). Three plants of each tomato genotype at the 5 to 6 true leaf stage were inoculated by spraying a 105 conidia/ml conidial suspension of C. fulvum on the leaflets of the 3rd and 4th leaf. Inoculation tests of each isolate were repeated at least twice. After inoculation, plants were grown in the greenhouse at 13 to 29°C and 99% relative humidity. However, for the first 20 h after inoculation, plants were kept in the dark. They were regularly monitored and were scored as resistant or susceptible at 20 days after inoculation. Susceptible genotypes developed pale green to yellow spots on the abaxial leaf surface and pale brown to olivaceous brown sporulation on the adaxial side. Plants lacking disease symptoms were considered resistant. Inoculated fungi were reisolated from infected tissue and the identity of the fungal cultures confirmed based on morphology and the ITS sequence. Based on the reactions of the tomato genotypes, two races were identified, three isolates (race 2) developed symptoms only in cv. MM Cf-2, while the remaining isolate (race 0) provoked symptoms only in cv. MM Cf-0.Fil: Rollan, Cristina. Universidad Nacional de la Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Protto, V. Universidad Nacional de la Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Medina, Rocio. Universidad Nacional de la Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: López, Silvina Marianela Yanil. Universidad Nacional de la Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Vera Bahima, José. Universidad Nacional de la Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Ronco, Blanca L.. Universidad Nacional de la Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Saparrat, Mario Carlos Nazareno. Universidad Nacional de la Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Balatti, Pedro Alberto. Universidad Nacional de la Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentin

    Ras-association domain of sorting nexin 27 is critical for regulating expression of GIRK potassium channels

    Get PDF
    G protein-gated inwardly rectifying potassium (GIRK) channels play an important role in regulating neuronal excitability. Sorting nexin 27b (SNX27b), which reduces surface expression of GIRK channels through a PDZ domain interaction, contains a putative Ras-association (RA) domain with unknown function. Deleting the RA domain in SNX27b (SNX27b-DRA) prevents the down-regulation of GIRK2c/GIRK3 channels. Similarly, a point mutation (K305A) in the RA domain disrupts regulation of GIRK2c/GIRK3 channels and reduces H-Ras binding in vitro. Finally, the dominant-negative H-Ras (S17N) occludes the SNX27b-dependent decrease in surface expression of GIRK2c/GIRK3 channels. Thus, the presence of a functional RA domain and the interaction with Ras-like G proteins comprise a novel mechanism for modulating SNX27b control of GIRK channel surface expression and cellular excitability

    NaHCO3 impairs the growth and fruit yield of tomato plants

    No full text
    Underground water enriched in NaHCO3 is used in farms of the Buenos Aires province for tomato crop irrigation. This farming practice leads to salt accumulation and soil impairment after several seasons of cultivation inside the greenhouses. This work assayed the effect of NaHCO3 on tomato fruit production. Plants of the Elpida variety of Solanum lycopersicum L were grown in a hydroponic system. The presence of NaHCO3 (from 5 mM, as measured in the underground water to 10 or 20 mM) reduced K+/Na+ ratio and whole plant biomass and fruit yield; however, no effect was observed on fruit quality parameters. To test the participation of ascorbic acid in the tolerance to this stress, two slggp1 Micro-Tom mutant lines deficient in this antioxidant were used. In these experiments plants were treated with 0, 5 and 10 mM NaHCO3 causing an impairment of K+/Na+ ratio, photosynthesis, fruit yield, leaf and shoot dry weight (but without effect in root biomass) and delaying of fruit ripening time. Wild type and mutants plant responses showed no differences at stress conditions. Although NaHCO3 treatments caused a similar impairment in ascorbic acid mutants and wild type plants, these results reinforced the physiological importance of ascorbic acid levels to optimize plant growth under non-stressful conditions. Taken as a whole, the results presented here demonstrated the importance of avoiding the accumulation of this salt in greenhouse soils to optimize tomato production

    Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27

    No full text
    G protein-gated inwardly rectifying potassium (GIRK) channels are important gatekeepers of neuronal excitability. The surface expression of neuronal GIRK channels is regulated by the psychostimulant-sensitive sorting nexin 27 (SNX27) protein through a class I (-X-Ser/Thr-X-Φ, where X is any residue and Φ is a hydrophobic amino acid) PDZ-binding interaction. The G protein-insensitive inward rectifier channel (IRK1) contains the same class I PDZ-binding motif but associates with a different synaptic PDZ protein, postsynaptic density protein 95 (PSD95). The mechanism by which SNX27 and PSD95 discriminate these channels was previously unclear. Using high-resolution structures coupled with biochemical and functional analyses, we identified key amino acids upstream of the channel's canonical PDZ-binding motif that associate electrostatically with a unique structural pocket in the SNX27-PDZ domain. Changing specific charged residues in the channel's carboxyl terminus or in the PDZ domain converts the selective association and functional regulation by SNX27. Elucidation of this unique interaction site between ion channels and PDZ-containing proteins could provide a therapeutic target for treating brain diseases
    corecore