1,086 research outputs found

    Goal-setting And Achievement In Activity Tracking Apps: A Case Study Of MyFitnessPal

    Full text link
    Activity tracking apps often make use of goals as one of their core motivational tools. There are two critical components to this tool: setting a goal, and subsequently achieving that goal. Despite its crucial role in how a number of prominent self-tracking apps function, there has been relatively little investigation of the goal-setting and achievement aspects of self-tracking apps. Here we explore this issue, investigating a particular goal setting and achievement process that is extensive, recorded, and crucial for both the app and its users' success: weight loss goals in MyFitnessPal. We present a large-scale study of 1.4 million users and weight loss goals, allowing for an unprecedented detailed view of how people set and achieve their goals. We find that, even for difficult long-term goals, behavior within the first 7 days predicts those who ultimately achieve their goals, that is, those who lose at least as much weight as they set out to, and those who do not. For instance, high amounts of early weight loss, which some researchers have classified as unsustainable, leads to higher goal achievement rates. We also show that early food intake, self-monitoring motivation, and attitude towards the goal are important factors. We then show that we can use our findings to predict goal achievement with an accuracy of 79% ROC AUC just 7 days after a goal is set. Finally, we discuss how our findings could inform steps to improve goal achievement in self-tracking apps

    Computing induced velocity perturbations due to a helicopter fuselage in a free stream

    Get PDF
    The velocity field of a representative helicopter fuselage in a free stream is computed. Perturbation velocities due to the fuselage are computed in a plan above the location of the helicopter rotor (rotor removed). The velocity perturbations computed by a source-panel model of the fuselage are compared with experimental measurements taken with a laser velocimeter. Three paneled fuselage models are studied: fuselage shape, fuselage shape with hub shape, and a body of revolution. The velocity perturbations computed for both fuselage shape models agree well with the measured velocity field except in the close vicinity of the rotor hub. In the hub region, without knowing the extent of separation, modeling of the effective source shape is difficult. The effects of the fuselage perturbations are not well-predicted with a simplified ellipsoid fuselage. The velocity perturbations due to the fuselage at the plane of the measurements have magnitudes of less than 8 percent of free-stream velocity. The velocity perturbations computed by the panel method are tabulated for the same locations at which previously reported rotor-inflow velocity measurements were made

    Effect of Blade Planform Variation on a Small-Scale Hovering Rotor

    Get PDF
    A hover test was conducted on a small-scale rotor model for three sets of tapered rotor blades and a baseline rectangular planform rotor blade. All configurations had the same airfoils, twist, and thrust-weighted solidity. The tapered blade planforms had taper initiating at 50, 75, and 94 percent of the blade radius with a taper ratio of 3 to 1 for each blade set. The experiment was conducted for a range of thrust coefficients, and the data were compared to the predictions of three hover analysis methods. The data show the 94 percent tapered blade was slightly more efficient at the higher rotor thrust levels. The other tapered planform rotors did not show the expected improvement over the baseline rotor, and all configurations had similar performance for low thrust coefficients. None of the analysis methods correlated well with the experimental data

    Effects of planform geometry on hover performance of a 2-meter-diameter model of a four-bladed rotor

    Get PDF
    Hover tests were conducted on three small scale rotors to evaluate the effects of blade planform taper on rotor hover performance. Tests were conducted on a rectangular swept-tip configuration, on a configuration with a 3 to 1 taper over the outboard 20 percent of the span, and on a configuration with a 5 to 1 taper over the outboard 20 percent of the blade span. The investigation covered a range of thrust coefficients from 0 to 0.0075 and a range of tip speeds from 300 to 600 ft/sec. The tests showed that both tapered configurations had better hover performance than the swept-tip rectangular configuration and that the 3 to 1 taper configuration was better than the 5 to 1 taper configuration. The test results were compared with predictions made with a prescribed wake analysis, a momentum analysis, and a simplified free wake analysis

    Responses of White-Footed Mice and Meadow Voles to Flyovers of an Aerial Predator Silhouette

    Get PDF
    Author Institution: Department of Zoology, The Ohio State University; Department of Poultry and Wildlife Sciences, University of NebraskaThe response of white-footed mice and meadow voles to a stylized hawk model pulled overhead was studied. Behavior such as looking up and following the path of the model, immobility, and/or entering a nest can was observed and statistically analyzed. Overall responsiveness peaked as the model passed directly overhead. Stationary models elicited fewer instances of immobility than moving models while significantly increasing the number of white-footed mice that entered nest cans. Meadow voles were more likely to move about the 36 x 20 x 15 cm cage, but not into nest cans, during stop-go flyovers than during non-stop flyovers

    Effect of blade planform variation on the forward-flight performance of small-scale rotors

    Get PDF
    An investigation was conducted in the Glenn L. Martin Wind Tunnel to determine the effect of blade planform variation on the forward-flight performance of four small-scale rotors. The rotors were 5.417 ft in diameter and differed only in blade planform geometry. The four planforms were: (1) rectangular; (2) 3:1 linear taper starting at 94 percent radius; (3) 3:1 linear taper starting at 75 percent radius; and (4) 3:1 linear taper starting at 50 percent radius. Each planform had a thrust-weighted solidity of 0.098. The investigation included forward-flight simulation at advance ratios from 0.14 to 0.43 for a range of rotor lift and drag coefficients. Among the four rotors, the rectangular rotor required the highest torque for the entire range of rotor drag coefficients attained at advanced ratios greater than 0.14 for rotor lift coefficients C sub L from 0.004 to 0.007. Among the rotors with tapered blades and for C sub L = 0.004 to 0.007, either the 75 percent tapered rotor or the 50 percent tapered rotor required the least amount of torque for the full range of rotor drag coefficients attained at each advance ratio. The performance of the 94 percent tapered rotor was generally between that of the rectangular rotor and the 75 and 50 percent tapered rotors at each advance ratio for this range of rotor lift coefficients

    Ablation Lesion Assessment with MRI

    Full text link
    Late gadolinium enhancement (LGE) MRI is capable of detecting not only native cardiac fibrosis, but also ablation-induced scarring. Thus, it offers the unique opportunity to assess ablation lesions non-invasively. In the atrium, LGE-MRI has been shown to accurately detect and localise gaps in ablation lines. With a negative predictive value close to 100% it can reliably rule out pulmonary vein reconnection non-invasively and thus may avoid unnecessary invasive repeat procedures where a pulmonary vein isolation only approach is pursued. Even LGE-MRI-guided repeat pulmonary vein isolation has been demonstrated to be feasible as a standalone approach. LGE-MRI-based lesion assessment may also be of value to evaluate the efficacy of ventricular ablation. In this respect, the elimination of LGE-MRI-detected arrhythmogenic substrate may serve as a potential endpoint, but validation in clinical studies is lacking. Despite holding great promise, the widespread use of LGE-MRI is still limited by the absence of standardised protocols for image acquisition and post-processing. In particular, reproducibility across different centres is impeded by inconsistent thresholds and internal references to define fibrosis. Thus, uniform methodological and analytical standards are warranted to foster a broader implementation in clinical practice

    Inflow Measurements Made with a Laser Velocimeter on a Helicopter Model in Forward Flight. Volume 1: Rectangular Planform Blades at an Advance Ration of 0.15

    Get PDF
    An experimental investigation was conducted in the 14- by 22-Foot Subsonic Tunnel at NASA Langley to measure the inflow into a scale model helicopter rotor in forward flight (microinf = 0.15). The measurements were made with a two component Laser Velocimeter (LV) one chord above the plane formed by the path of the rotor tips (tip path plane). A conditional sampling technique was employed to determine the azimuthal position of the rotor at the time each velocity measurement was made so that the azimuthal fluctuations in velocity could be determined. Measurements were made at a total of 147 separate locations in order to clearly define the inflow character. This data is presented without analysis. In order to increase the availability of the resulting data, both the mean and azimuthally dependent values are included as part of this report on two 5.25 inch floppy disks in Microsoft Corporation MS-DOS format
    corecore