
Schmid, K. & Gacek, C. (2000). Implementation issues in product line scoping. Lecture notes in

computer science, 1844, pp. 38-82. doi: 10.1007/978-3-540-44995-9_11

<http://dx.doi.org/10.1007/978-3-540-44995-9_11>

City Research Online

Original citation: Schmid, K. & Gacek, C. (2000). Implementation issues in product line scoping.

Lecture notes in computer science, 1844, pp. 38-82. doi: 10.1007/978-3-540-44995-9_11

<http://dx.doi.org/10.1007/978-3-540-44995-9_11>

Permanent City Research Online URL: http://openaccess.city.ac.uk/257/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print

one copy of any article(s) in City Research Online to facilitate their private study or for non-

commercial research. Users may not engage in further distribution of the material or use it for any

profit-making activities or any commercial gain. All material in City Research Online is checked for

eligibility for copyright before being made available in the live archive. URLs from City Research

Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/2707685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk
http://www.city.ac.uk/

Implementation Issues in Product Line Scoping
Klaus Schmid and Cristina Gacek

Fraunhofer Institute for Experimental Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern, Germany

{schmid, gacek}@iese.fhg.de

ABSTRACT
Often product line engineering is treated similar to the
waterfall model in traditional software engineering, i.e., the
different phases (scoping, analysis, architecting,
implementation) are treated as if they could be clearly
separated and would follow each other in an ordered fashion.
However, in practice strong interactions between the
individual phases become apparent. In particular, how
implementation is done has a strong impact on economic
aspects of the project and thus how to adequately plan it.
Hence, assessing these relationships adequately in the
beginning has a strong impact on performing a product line
project right.

In this paper we present a framework that helps in exactly
this task. It captures on an abstract level the relationships
between scoping information and implementation aspects
and thus allows to quickly analyze implementation aspects
of the project. We will also discuss the application of our
framework to a specific industrial project.

Keywords
Software product line, domain engineering, scoping,
architecting, implementation

1 Introduction
Recently, the importance of an architecture-based approach
to software reuse has been recognized as being a key driver to
achieving high reuse levels. Product Line Software Engineer-
ing combines this with ideas from domain engineering [1, 2]
like the up-front analysis of commonalities and variabilities
present in the product line. A specific method forProduct
Line SoftwareEngineering is PuLSETM, an approach devel-
oped at the Fraunhofer IESE [3]. This approach provides
technologies for addressing all life cycle stages of a product
line engineering project: scoping, domain analysis, architec-
ture development, and system implementation. In this paper
we will concentrate on the approach proposed for scoping re-
use infrastructures in the context of product line engineering.
This approach is called PuLSE-Eco [4].

PuLSE-Eco is based on the idea of using the business objec-
tives in deriving the product line scope. That is, they are the
key criteria for deciding whether something should be part of
the scope or not. Thus, depending on the specific business ob-
jectives relevant to the company, the scope may vary, even
for the same line of products.

As part of our exposure to industrial projects we had to rec-
ognize that the different phases of product line development
are strongly interrelated with each other. Already during
scoping some implementation level information is needed in

order to adequately analyze the economics of the product line
project that has to be planned. This fact lead us to analyze
more deeply the relationship between the general product line
situation and the implementation aspects. In this paper we
present the results of this analysis.

The paper is structured as follows: in the remainder of this
section we will discuss in more detail the type of relations be-
tween scoping and implementation we are looking at in this
paper. In Section 2 we will describe in some detail our frame-
work. First, we will discuss in Section 2.1 the environmental
factors on which we base our framework and in Section 2.2
the implementation aspects for which we want to derive some
information. Section 2.3 will then describe in some detail the
relationships we found. In Section 3 we will then apply this
framework to a case study and describe the insights we could
gain from this. Finally, Section 4 concludes.

1.1 Product Line Scoping
Scoping is a key step in any product line or domain engineer-
ing project. It determines actually which parts of the systems
will be supported by reusable assets:

• If too much is supported in a reusable way, this may im-
pair the overall pay-off as engineering for reuse is usu-
ally more expensive than single-system development.

• If too little is supported, the situation may actually be
even more complicated, as assets that do not support
the necessary range of variability can only be used in a
subset of the required products.

This shows that it is both very important to do scoping right
and at same time not easy to do it right.

In particular, scoping impacts the following sub-decisions:

• Should we build a product line for this particular sys-
tem family?

• What functionalities to include in the domain analysis?
• What functionalities should be directly supported by

the reference architecture?
(e.g., by a component of the architecture)

• For which functions should reusable lower level assets
be implemented?

Often scoping is performed to analyze whether a certain do-
main should be supported in terms of a reuse infrastructure.
This view is especially common with domain engineering ap-
proaches [1, 2, 5]. This is typically extended in a straightfor-
ward manner to product lines, i.e., the union of the function-
ality of the systems is regarded as “the domain”. PuLSE-Eco
underlies a somewhat different concept. Domains are concep-

tual domains that describe a certain type of functionality (e.g.,
report writing, internet data transfer, etc.) several of them
may be relevant to a single system. This situation is depicted
in Figure 1.

1.2 Scoping Impacts Architecture and Implementation
As described above some important decisions for the refer-
ence architecture are already determined during scoping,
strongly influencing the range of functionality supported by
the reference architecture. While later activities may change
this scope based on additional information and better insight
gained during the latter stages, usually the basic scope will re-
main intact. Among the architecture decisions that are usually
(implicitly) made during scoping are the following:

• The functionality explicitly supported by the reference
architecture is roughly defined. This has the conse-
quence that certain functionalities, although part of the
product family, will not be explicitly supported by the
reference architecture.

• The major variabilities that are explicitly supported by
the reference architecture are identified. In particular
this entails some minimum requirements on component
interfaces (e.g., what functionality to encapsulate,
whether the absence of components needs to be han-
dled as is the case for optional features)

• Similarly, already some basic services are identified
that will be relevant to all the systems and will thus be
of general importance.

Further, some constraints are identified, which are not so ob-
vious:

• Initial assumptions about the underlying architecture
are made since they determine costs and effort esti-
mates

• An initial guess about the major architectural style can
be made as the major domain characteristics are known
(e.g., event-based architecture, layered architecture)

• Assumptions on the implementation schema need to be
made (e.g., generator, component-based, etc.) as the
economies of the product line and thus the decision on
what to support by reuse strongly depend on this (e.g.,
for generator-based implementation the up-front in-
vestment is much higher, but the costs of individual
system is lower than the nominal case).

These decisions can be made that early as they largely depend
on easy to elicit aspects of the product line like: number of
systems, maturity of the domain, etc. However, while these
assumptions are assumed to be incorporated in the product
line reference architecture, in situations where one or more of
these assumptions cannot be properly or efficiently accom-
modated in the reference architecture, the results of scoping
must be revisited accordingly.

1.3 Architecture and Implementation Impact Scoping
While the fact that scoping has an impact on the definition of
the reference architecture seems to be rather straightforward,
the fact that implementation level assumptions (e.g., architec-
ture) are relevant to identifying the appropriate scope is less
obvious. However, one such influence has just been illustrat-
ed: in order to derive the scope and the economic viability of
a scope, assumptions about the implementation technology
need to be made. However, some more obvious uses of an ar-
chitecture are:

• An existing architecture (e.g. for a single system which
shall be expanded towards a product line) needs to be
taken into account as it will influence the future archi-
tecture (cf. [6]).

• Even in cases where no system architecture exists there
will be inherent assumptions in defining the features of
the system and what is exactly meant by a certain func-
tionality. These include things like whether the feature
definition encompasses all the activities down to the
data base access or whether intermittent features exist
that perform some pre-processing. Initial decisions and
structuring of interacting features of this type are called
a conceptual architecture. As the conceptual architec-
ture obviously influences what scope definitions are
made, it is better to make it explicit.

• Especially for identifying the economics of the scope,
it is important to make the conceptual architecture ex-
plicit, because an estimate on the amount of effort
needed for a feature can only be given after it has been
clarified what behaviour shall be regarded as part of
this feature.

• The way the product line is supposed to be implement-
ed is very important to determining the economics of
the scope definition, hence, what is the most appropri-
ate scope.

Figure 1. Relationship between domains and systems

domains

systems

As described above, there are quite a few aspects that become
visible during scoping, which lead to serious constraints on
the architecture and the implementation of a software product
line. In turn, these constraints and the solutions chosen have
actually a large impact on the economics of the product line
situation and thus on how the scope should be derived. Con-
sequently, they need to be made explicit as early as possible,
just like the conceptual architecture.

In order to do so, we developed a framework that makes the
relationship between the high level aspects (e.g., business
goals), the architectural issues, and chosen implementation
method explicit. As product line development is still in its
early days and only little validated information on this rela-
tionship is documented, we could not rely as much on expe-
rience as we would have liked to. However, quite a few rela-
tions can be deduced from technological knowledge in the
field with sufficient confidence. Additionally, we have been
able to partially validate our framework in the context of an
industrial project. At this point we have to focus on this type
of information for the framework presented here. The follow-
ing benefits are expected of the framework:

• Help in performing the scoping activity right, as it al-
lows to deduce relevant information.

• Restrict (in an adequate way) the solution space for the
implementation aspects of the product line, similar to
the framework provided in [7] for architectures based
on domain characteristics.

• Support validation of existing reference architectures.
• Be a starting point for aggregating further knowledge,

as more and more lessons learned are found.
The relationships are briefly summarized in Figure 2.

1.4 Related Work
The idea that high-level inputs have important implications
for architecture and implementation decisions is not new, to
the contrary [7]. Consequently, we will not reiterate this type
of material. Instead we will concentrate on PL aspects.

Within the realm of scoping approaches we do not know at
this point of any other approach which tries to explicitly fill
the gap of determining which implementations assumptions
should be used in the scoping process. Some assessment-

based approaches to scoping like [5, 8] use criteria like matu-
rity of the domain directly to assist in scoping, however, they
make the feedback loop which exists not explicit. On the oth-
er hand economic models [9] usually use the implementation
characteristics we identified here in order to determine the re-
use project economics.

A framework for assisting an architectural style choice based
on certain domain characteristics has been previously defined
[10] and later refined [7]. That work provides a characteriza-
tion of architectural styles based on a set of features focusing
on control and data issues. It also provides rules-of-thumb for
architectural styles selection while considering the required
characteristics of the architectural solution being built. vs. the
architectural styles intrinsic characteristics. Although their
work is quite useful, it addresses the construction of one-of-
a-kind software system architecture only. These considera-
tions are also relevant for the construction of product line ref-
erence software architectures, but are not enough. There are
many product line environmental factors that must also be
considered.

Classifications of reuse approaches have existed for a while
[11, 12]. These usually compare and contrast various ap-
proaches, yet fail to provide guidelines on their selection de-
pending on the situation.

In this paper we provide support for architectural style selec-
tion within product lines, as well as define clear guidelines for
the resolution of reuse infrastructure implementation deci-
sions. The underlying approach that is used for selecting a
specific technology for a specific situation is similar to the se-
lection of technology packages in the context of experience
factories [13].

It is important to note that architectural style choice is just one
of the issues relevant to the definition of a product line refer-
ence architecture [14]. Other considerations are less depend-
ant on the product line environmental factors, hence not in the
focus of this paper. These other considerations are addressed
elsewhere [15, 16].

2 The Framework
In this section, we will describe the basic framework for re-
lating business factors and implementation factors. Note,
however, that we did refrain from including all possible such
relationships. Instead, we concentrated on those aspects that
are particular to product lines, as other aspects like the rela-
tionship between domain aspects and architecture have been
described elsewhere [7]. Below, we will first discuss the busi-
ness (or environmental) factors and the reasons for choosing
these particular factors. Then, we will similarly discuss the
implementation level aspects. In a third subsection we will
then describe the relationships we found.

2.1 Environmental Factors
There are quite a few characteristics of a product line project
that can be easily surveyed with the help of domain experts
early on with little effort and have a quite strong impact on
the technical solutions one should be aiming for. Here we will

Scoping

Domain Analysis

Implementation

Architecting

provides
constraints impacts

appropriate
decision

Figure 2. Relationship between scoping and
implementation

describe the ones we could identify so far both from literature
[5,1], as well as by our experience and thorough study of the
topic area. Below we will discuss each of the factors we could
so far identify as being relevant. Note that the scales we pro-
pose are clearly subjective. This is not assumed to be a
problem since only the magnitude of the values is relevant.

Number of independent features
How many features relevant to distinguishing the various
members of the product line can be identified? The measure
is relative to the overall size of the functional area. Meaning
larger functional areas can also be expected to have
more features without changing the value of the measure. The
scale has the values low, medium, high (e.g., for a domain es-
timated at 100 kLoC 10 features would be low, while 100
would be high).

Structure of the product line
This captures whether variabilities among systems are domi-
nated by optionality or alternative. Usually, both of them will
exist, thus we are looking here at the predominant type of var-
iability. Scale is: optional, neutral, alternative (e.g., 20% op-
tionalities, 80% alternatives would still be captured as alter-
native).

Variation degree
What percentage of a system is expected to be covered by the
core (i.e., the overall common) part? low, medium, high (low
~ 40%, high ~80%).

Number of products
What is the number of products the product line is expected
to contain? Scale: low, medium, high (low<=5, high>=12)

Complexity of feature interactions
This describes how interrelated features are on average. Two
features are called interrelated if one modifies the behaviour
of the other (i.e., the functionality is not just the sum of the
two). This is again measured by low, medium, high.

Feature size
The size of a feature is basically the amount of code relevant
to implementing it. It is measured on a scale ranging from low
(approx. one procedure/method/object) to high (a complete
subsystem).

Performance requirements
The performance requirements (memory, run-time) are meas-
ured relative to what is not easy to provide. Thus, the per-
formance requirements are called strict, if they are expected
to be a high priority design rationale to squeeze out the re-
quired performance level. Otherwise (i.e., it is obvious that
the required performance levels can be achieved) the per-
formance requirements are called loose.

Coverage
This basically measures to what extent the potential feature
combinations will actually occur. For example, if 100 option-
al features exist then the domain contains 2100possible com-

binations; if actually only a small number of products (10)
will be developed than the coverage is obviously low. Con-
versely for high coverage.

Maturity/Stability
If the domains relevant to the product line are not expected to
change and are well understood (e.g., as shown by standardi-
zation) then they can be regarded as being of high maturity/
stability. Scale: low, medium, high

Entry points
Three different starting situations can be distinguished for the
product line project (cf. [17]):

• Independent PL: a new product line is developed from
scratch

• Integrating PL: product line is introduced while some
products are already under development

• Reengineering-driven PL: the core product line assets
are reengineered from legacy systems

Openendedness
This describes the range of functionality that may be relevant
to the systems now and in the future (i.e., can it be expected
that the currently identified set of features will also cover fu-
ture systems well or is there an expectation that future prod-
uct line members may need other features?). As opposed to
maturity/stability this doesn’t address the change in the fea-
tures that are relevant to a domain, but with respect to the do-
mains that are relevant to the system family. Scale: open, neu-
tral, bounded.

2.2 Implementation Aspects
Similarly to our discussion of the environmental factors as in-
put to the framework, we are now going to describe the as-
pects we want to derive values for as results from our frame-
work. So far we could identify four aspects for which recom-
mendations (i.e., constraints) can be derived from the input
factors described above.

Each of the four aspects can be seen as independent in the
sense that the values for the various factors can be independ-
ently derived and used. Further, especially the values for the
first three categories should be seen as describing a continu-
um, within which only some extreme have been identified
similar to the environmental factors.

2.2.1 Type of reuse infrastructure
What kind of technology should be the basis for the resulting
infrastructure construction (i.e., what is the aimed-at result)?
At this point we distinguish three different categories.

Software Platform
While in the literature many different meanings are given to
the termsoftware platform, we use it here explicitly to refer
to groups of assets that only address the commonalities within
a product line, i.e., the assets contained in the software plat-
form will be incorporated in every product in the product line.

Product Line/Reference Architecture
As opposed to a platform a reference architecture provides
the concepts for the complete products, including also vari-
abilities.

Domain-Specific Language (DSL)
A DSL is provided that completely abstracts from all imple-
mentation details and covers all characteristics that may be
relevant to systems.

2.2.2 Variability Representation
This describes how variability is mapped to code from an im-
plementation point of view.

Pure Code
The code assets are expected to contain only code. No para-
metrization except for the selection of code components and
the run-time parameters are expected to exist.

Parametrization
In this case some compile-time parameters are expected to
exist. Conditional compilation is one approach for imple-
menting this approach.

Template
In this case, assets are more generalized and code fragments
may be reassembled in a rather sophisticated way during
compilation. Frames or aspect-oriented programming are ex-
amples of this kind of approach.

DSL
Here, the full capabilities of a language can be used to de-
scribe variabilities in the domain. (Note that opposed to the
previous section here we use DSLs not as a means to describe
the coverage, but as means to describe variability.)

2.2.3 Level of Detailedness
As [14] points out, there are many different interpretations of
what level of detail is implied by the term product line archi-
tecture. Similarly, many different interpretations can be given
to the term reuse infrastructure. Here, we simplify the discus-
sion by distinguishing only three main levels of detailedness
of the reuse infrastructure. (Below code is meant to include
also templates and parametrized code.)

Reference Architecture Description
Only a reference architecture description is developed but no
code is actually produced.

Core Code
On top of the architecture description code components to
cover the core functionality are developed.

Full Range
Here, most code components (except for system-specific
parts) are actually developed.

2.2.4 Architectural Concept
Unlike the other implementation aspects, the architectural
concept cannot be precisely defined based only on the envi-
ronmental factors described earlier. The style choice for the
overall product line reference architecture and its subsystems

depends also on external factors. The most influential exter-
nal factors that must be taken into account are domain drivers,
pre-existing architectures of systems and/or subsystems lega-
cy or already under development, as well as the architectural
assumptions made while scoping was being performed.

How domain drivers impact the architectural style choice has
already been described by Mary Shaw and Paul Clements
[10]. During the construction of a product line reference ar-
chitecture, just as for single system architectures, their ap-
proach for selecting an architectural style should always be
taken into account.

Additionally, if the entry point is reengineering-driven or in-
tegrating product line, pre-existing architectures or architec-
tural parts do heavily influence the architectural style choice.
The reason for this is twofold, the existing architecture al-
ready has its own style [18], and, while using existing parts,
architectural mismatches must be either avoided or handled
appropriately [19].

The impacts suggested by the environmental factors dis-
cussed in section 2.1 will be discussed shortly.

2.3 The Relationships
Above we described both environmental factors and
implementation aspects for software product lines. However,
as we discussed previously, there is a close relationship
between the identified factors. The relationships we could
identify so far are summarized in this section. They had to be
derived mostly from our background on the subject matter as
to our knowledge so far no comparable studies exist.
Consequently, these relationships should be regarded as
being of preliminary nature.

Each of the relationships will be described below in the form
of a prototypical situation (in terms of the environmental
factors) in which the corresponding value for the
implementation factors should be chosen. As a real situation
will usually not correspond exactly to a certain prototypical
situation, the results may not exactly correspond to one of
the prototypical results. A further discussion on how to use
the results of applying the relationships in a real situation is
given in Section 3.

2.3.1 Type of reuse infrastructure

Software Platform
A software platform, especially in the sense of a platform that
supports several product lines (e.g. cellular phone, as well as
wired phones), is usually a high investment that is only
worthwhile, if a large number of products will be supported
by it. In order for such an investment to pay off also a high
stability and maturity of the domain is required.

1) Number of independent features: *

2) Structure of the product line: *
3) Variation degree: low..medium
4) Number of products: high
5) Complexity of feature interactions: low
6) Feature size: *
7) Performance Requirements: loose

8) Coverage: low
9) Maturity/Stability: high
10) Entry Points: *
11) Openendedness: *

Reference Architecture
Here, the idea is to get a single line of products under control.
This is worthwhile if overall variations are restricted, so that
a common architecture can be realistically provided (i.e., all
systems have a similar structure).

1) Number of independent features: *

2) Structure of the product line: *
3) Variation degree: *
4) Number of products: *
5) Complexity of feature interactions: low..medium
6) Feature size: medium..high
7) Performance Requirements: *
8) Coverage: low..medium
9) Maturity/Stability: *
10) Entry Points: *
11) Openendedness: *

DSL
A complete coverage of all software that might be possibly
relevant to the product line is only worthwhile if the problem
domain is clearly bounded and stable and a large number of
products is expected to exist such that a positive return on in-
vestment can be expected.

1) Number of independent features: low..medium

2) Structure of the product line: *
3) Variation degree: medium..high
4) Number of products: high
5) Complexity of feature interactions: medium..high
6) Feature size: low..medium
7) Performance Requirements: loose
8) Coverage: medium..high
9) Maturity/Stability: medium..high
10) Entry Points: independent
11) Openendedness: bounded

2.3.2 Variability Representation

Pure Code
This is meaningful in particular if features do not have a large
impact on the implementation of other features and if only a
small subset of these combinations will actually be imple-
mented.

1) Number of independent features: *

2) Structure of the product line: opt
3) Variation degree: *
4) Number of products: *
5) Complexity of feature interactions: low
6) Feature size: *
7) Performance Requirements: *

8) Coverage: low
9) Maturity/Stability: *
10) Entry Points: *
11) Openendedness: *

Parametrization
This allows to represent more variabilities and interactions,
but has the down-side to require a higher effort and is more
difficult to do right, which implies that the domain(s) should
be rather stable and mature.

1) Number of independent features: *

2) Structure of the product line: alt
3) Variation degree: *
4) Number of products: *
5) Complexity of feature interactions: low..medium
6) Feature size: *
7) Performance Requirements: *
8) Coverage: low..medium
9) Maturity/Stability: medium..high
10) Entry Points: *
11) Openendedness: *

Templates
This again allows for a larger degree of variation but is again
more difficult to do and requires a larger number of systems
to pay off.

1) Number of independent features: *

2) Structure of the product line: *
3) Variation degree: medium..high
4) Number of products: medium..high
5) Complexity of feature interactions: medium..high
6) Feature size: low..medium
7) Performance Requirements: loose
8) Coverage: medium..high
9) Maturity/Stability: medium..high
10) Entry Points: independent,

integrating
11) Openendedness: bounded

DSL
Again a larger degree of variabilities can be represented, but
again also a larger effort is required. As the underlying eco-
nomics are the same as in Section 2.3.1, the same situational
characteristics apply.

2.3.3 Level of Detaildness
How much up-front investment is meaningful mainly de-
pends on how strongly the systems will overlap and thus how
much of the investment can be recovered over the various
systems. Scoping itself will then be used to refine this a-priori
expectation.

Reference Architecture Description
One will restrict oneself usually to this solution if the situa-
tion is rather unclear and only few systems are expected to re-
cover the up-front investment.

1) Number of independent features: *

2) Structure of the product line: *
3) Variation degree: low
4) Number of products: low
5) Complexity of feature interactions: *
6) Feature size: *
7) Performance Requirements: *
8) Coverage: low
9) Maturity/Stability: medium
10) Entry Points: *
11) Openendedness: *

Core Code
In case variability is high, thus covering all combinations will
not pay off, but the core can be expected to be sufficiently sta-
ble this approach can be assumed to be adequate.

1) Number of independent features: *

2) Structure of the product line: *
3) Variation degree: low..medium
4) Number of products: low..medium
5) Complexity of feature interactions: *
6) Feature size: *
7) Performance Requirements: *
8) Coverage: low
9) Maturity/Stability: medium
10) Entry Points: *
11) Openendedness: *

Full Range
If variability over the whole range of product features is suf-
ficiently stable and under control, and covered by products,
this approach can be regarded as most adequate.

1) Number of independent features: *

2) Structure of the product line: *
3) Variation degree: medium..high
4) Number of products: medium..high
5) Complexity of feature interactions: low..medium
6) Feature size: *
7) Performance Requirements: *
8) Coverage: medium
9) Maturity/Stability: medium..high
10) Entry Points: *
11) Openendedness: *

Table 1 gives a summary of the relationships we described
above.

2.3.4 Architectural Concept
Given the fact that the environmental factors cannot clearly
define directions to be considered by the reference architec-
ture while ignoring external factors (see section 2.2.4), in this
section we will simply describe how each of the environmen-
tal factors contributes to architectural decisions. The weight
given to specific factors, both environmental and external,
varies from situation to situation, depending on the major

risks and priorities at hand. Consequently, we cannot pre-
scribe here how the combination of differing influencing fac-
tors should be dealt with. A method such as ATAM [20]
should be used for resolution support.

Number of Independent Features
When the number of independent features is high, the use of
layering would be recommended simply because it provides
higher levels of abstraction to facilitate reasoning.

Structure of the Product Line
Having alternatives or not has no impact in the architectural
style choice. The impact is only on making sure that the var-
ious alternatives do implement the same interface and that
their underlying assumptions do not clash with the rest of the
architecture. The use of layering or abstract data types may
help by localizing considerations on various alternatives.

The existence of optional items does have a stronger architec-
tural impact. Components and connectors interacting with the
optional parts must be able to handle both their presence and
their absence. The best way to deal with optional architectural
items is to use styles where components are self contained
and ignore the existence of others, by assuming that required
services will be performed somehow elsewhere. Examples of
these styles are event based, blackboard, C-2, database cen-
tric, pipe and filters, and communicating processes.

Variation Degree
If the variation degree is low, the architecture for every sys-
tem instance will have to have many components and connec-
tors added as being system specific. Hence, one must already
plan for ease of component and connection addition. The
styles best suited for this purpose are event based, black-
board, C-2, database centric, pipe and filters, and communi-
cating processes.

Number of Products
Integrating instance specific parts has inherent costs. Differ-
ing architectural styles may provide lower instance specific
integration costs, yet higher set up costs (e.g., blackboard).
The larger the number of products the product line is expect-
ed to contain, the better the justification for adopting such ar-
chitectural styles.

Complexity of Feature Interactions
Unless this is extremely low, the styles mentioned in section
should be avoided.

Feature Size
This factor has no architectural impact.

Performance Requirements
These are domain drivers that were considered by Shaw and
Clements [10]. For considerations on this aspect please refer
to their work [21].

Coverage
This factor plays only a very subjective role in the architec-
tural context. If coverage is low, one must be careful not to
over engineer the architectural solution.

Maturity/Stability
A highly mature domain implies that there is a known (set of)
solution(s) to the problem. A known architectural solution
should then be used for the reference architecture (i.e., any
style that can support the solution works).

A mature domain composed of subdomains that are still
evolving can be best supported by layering or abstract data
types.

A not so mature domain implies that components will be
evolving, some extra ones be added, and existing ones re-
moved. Best solutions to this are the styles event based,
blackboard, C-2, database centric, pipe and filters, and com-
municating processes.

Entry Points
Both integrating and reengineering driven product line must
consider pre-existing assets. The best way of dealing with
pre-existing parts is by using layers, simply using the pre-ex-

isting architecture, implementing some wrapping scheme
[18], and/or using instrumented connectors [21].

Openendedness
The values open and neutral imply that components will be
evolving, some extra ones be added, and existing ones
removed. Best solutions to this are the styles event based,
blackboard, C-2, database centric, pipe and filters, and
communicating processes.

3 Applying the Framework
In the previous section, we concentrated on a description of
the relationships between the environmental factors and the
implementation aspects we found. As we discussed earlier,
these relationships can be read both ways. They are
identified in the scoping phase, but have an impact on the
implementation. On the other hand these implementation
aspects need to be taken into account already during scoping.
Here, we will concentrate on the first aspect and discuss how
a description of a project environment can be used to derive a

N
um

ber of definable features

S
tructure of the product line

D
egree of V

ariation

N
um

ber of P
roducts

C
om

plexity of feature interactions

F
eature size

P
erform

ance requirem
ents

C
overage

M
aturity/S

tability

E
ntry points

O
penendedness

T
ype of reuse infrastructure

R
epresentation of V

ariability

Level of D
etailedness

* * * high low * loose low * * * Plat-
form

* *

* * * * low/
med

med/
high

* low/
med

* * * Ref.
Arch.

* *

low/
med

* med/
high

high med/
high

low/
med

loose med/
high

med/
high

indep. boun
ded

DSL * *

* opt * * low * * low * * * * Code *

* alt * * low/
med

* * low/
med

med/
high

* * * Param. *

* * med/
high

med/
high

med/
high

low/
med

loose med/
high

med/
high

indep/
integr.

boun
ded

* Templ. *

low/
med

* med/
high

high med/
high

low/
med

loose med/
high

med/
high

indep. boun
ded

* DSL *

* * low low * * * low low/
med.

* * * * Arch.
Repr.

* * low/
med

low/
med

* * * low med * * * * Core
Code

* * med/
high

med/
high

low/
med

* * med med/
high

* * * * Full
Range

Table 1: Summary of the Framework Relationships

first estimate of the implementation aspects.

The situation we discuss is derived from a real industrial
project. A brief assessment of the situation leads to the
following characterization of the product line situation:

1 Number of independent features: medium
2) Structure of the product line: opt
3) Variation degree: high
4) Number of products: low..medium
5) Complexity of feature interactions: low..medium
6) Feature size: low..medium
7) Performance Requirements: loose
8) Coverage: low
9) Maturity/Stability: medium
10) Entry Points: integration
11) Openendedness: open

As we discussed before, the domain description is not part of
this characterization, as we concentrate here on those aspects
that are specific to the product line approach, as opposed to
those that are specific to the type of systems.

3.1 Implementation Aspects
When discussing the various relationships in Section 2.3, the
aspects type of reuse infrastructure, variability
representation, and level of detailednesswere described in
terms of prototypical situations. For determining the type of
solution that is most appropriate to our example, we will use
a simple similarity measure. The solution that has the highest
similarity is then the one which is considered most
appropriate for the situation. The fact that the different
values we identified only specify specific points in a
continuum, shows up in situations were two values have a
similar rating. In these situations we assume that the “true”
value lies somewhere in-between these values.

The similarity measure we will use here is very simply
defined. We add over all attributes and divide the result by
the number of non-’*’ attributes. If a relationship says
nothing about this attribute, then the value 0 is used.
Likewise, if the value(-range) in the situation and the value (-
range) in the relationship do not overlap. If the value(-range)
in the situation is fully contained in the range determined in
the relation a 1 is added. If there is only an overlap than 0.5
is added. This approach leads to the similarity values given
in Table 2:

When we look at the results, we can make several interesting
observations. For the type of reuse infrastructure the
reference architecture has the highest value. This flows
pretty well with our initial assumptions about the product

line project, where based on the initial contacts we assumed
(without the framework) that this would be appropriate.

For representing variabilitycode has by far the highest
value, with still a very high value for parametrization. Again
this fits very well with our initial ideas about the product
line. Additionally, the hint for parametrization — while
originally we did not look at it — is regarded as an
interesting idea that deserves more investigations, while the
other options are clearly inappropriate.

With respect to the level of detailedness we can see that both
core codeand full range received similar values. This hints
at the most appropriate resolution being somewhere in
between these two values. Again, this flows pretty well with
our intuition about the project that we strive towards a rather
complete reusability of the code components, while some
components may just not be appropriate.

After having identified this information we have a good
starting point for performing a more reliable scoping, as we
now have an informed estimate on how implementation will
be done. This is crucial, as for example, the distinction
between domain-specific languages, templates, and pure
code has a strong impact on the overall economics of the
product line project. Similarly the amount of code that will
be shared has a strong impact. While it would be possible to
derive values for each of the aspects from scratch whenever
the situation arises it is very helpful to use this framework as
it saves much time and it allows a neutral judgement (e.g., in
the example above we would have made not always exactly
these conclusions without the framework and wherever the
framework provided a different hint, it was good to deeply
consider the framework proposal.

3.2 Architectural Concept

Within this same project, we are currently working towards
deriving a product line reference architecture. The fact that
the structure of their product line is predominant on
optionalities, is composed of domains with medium
maturity, and is openended, suggest that styles such as event
based, blackboard, C-2, database centric, pipe and filter, and
communicating processes be considered.

Since the number of products expected to be in the product
line is low to medium, a blackboard style is not really an
option. Based on the domain drivers we have also been able
to discard the usage of a pipe and filter style.

This product line is being built using a couple of pre-existing
systems. We are currently in the process of retrieving their
existing architectures. We already know that the overall
systems are layered, but it is not yet clear which other styles

Table 2: Similarity Values for Case Study

Type of reuse infrastructure Representation of Variability Level of Detailedness

Platform
Ref.

Arch.
DSL Code Param. Templ. DSL

Arch.
Repr.

Core
Code

Full
Range

0.625 0.8222 0.6 1 0.8 0.6666 0.45 0.625 0.75 0.7

are present where. Additionally, the decision on which parts
to reengineer, which ones to redevelop, and which ones to
incorporate as is has not yet been made.

All the factors above and the current product line
requirements will be taken into account while we apply
PuLSE-DSSA [15] and ATAM [20] to derive their reference
architecture. This clearly identifies how environmental
factors impact architectural decisions, yet also stresses that
they are only part of the process.

4 Conclusions and Future Work
Due to little existing experience in product lines, guidance
towards their key decisions is needed. In this paper, we
highlighted the fact that information elicited during scoping
also has clear impacts on architectural and implementation
decisions. We have also shown that the converse relation,
though less intuitive, also exists.

Our most important contribution here is towards defining a
framework to support the resolution of implementation and
architectural decisions based on environmental factors
elicited while scoping is performed. We have illustrated how
to use this framework with a real-life case study. This case
study showed our approach to be very appropriate, providing
a good fit and saving a substantial amount of time.

As future work we shall apply this framework to other
environments, allowing us to further validate and improve
the concepts as needed [22]. Additionally, we shall also
provide a more formal mechanism for information capture
and exchange between the scoping and architecting efforts,
as well as specify configuration management rules and
policies to be applied in this context.

5 Bibliography
1. Reuse-Driven Software Processes Guidebook, Software

Productivity Consortium Services Corporation,
Technical Report SPC-92019-CMC, 1993

2. Organization Domain Modeling (ODM) Guidebook,
Version 2.0, Software Technology for Adaptable,
Reliable Systems (STARS), Technical Report STARS-
VC-A025/001/00, 1996

3. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig,
K. Schmid, T. Widen, and J.-M. DeBaud. “PuLSE: A
methodology to develop software product lines,” in
Proceedings of Symposium on Software Reusability’99
(SSR’99), May 1999.

4. J.-M. DeBaud and K. Schmid.“ A systematic approach to
derive the scope of software product lines,” in
Proceedings of the 21st International Conference on
Software Engineering (ICSE 99), 1999.

5. Department of Defense - Software Reuse Initiative,
Domain Scoping Framework,Version 3.1, Volume2,
Technical Description, 1995

6. J.M. DeBaud and J.F. Girard. “The Relation between the
Product Line Development Entry Points and
Reengineering,” inProc. of Workshop on Development
and Evolution of Software Architecture for Product
Families, Las Palmas de Gran Canaria, Spain, Feb. 1998

7. L. Bass, P. Clements, and R. Kazman.Software
Architecture in Practice, Addison Wesley, 1998

8. Reuse Adoption Guidebook, Software Productivity
Consortium Services Corporation, 1993

9. J. Poulin.Measuring Software Reuse. Addison Wesley,
1997.

10. M. Shaw and P. Clements. “A Field Guide to Boxology:
Preliminary Classification of Architectural Styles for
Software Systems,” inProceedings of COMPSAC 1997,
Washington, DC, August 1997

11. C. Krueger. “Software Reuse,”ACM Computing Surveys,
vol. 24, no.2, June 1992, pp. 131-183

12. J.M. DeBaud.The Construction of Software Systems
using Domain-Specific Reuse Infrastructures, Ph.D.
Dissertation, Georgia Institute of Technology, Atlanta,
GA, USA, 1996

13. Andreas Birk, Felix Kröschel. A Knowledge
Management Lifecycle for Experience Packages on
Software Engineering Technologies. IESE-Report No.
007.99/E, February, 1999

14. D. Perry. “Generic Architecture Descriptions for Product
Lines,” in Proceedings of Workshop on Development and
Evolution of Software Architecture for Product Families,
Las Palmas de Gran Canaria, Spain, Feb. 1998, pp 51-56.

15. J. Bayer, O. Flege, and C. Gacek. “Creating Product Line
Architectures,” submitted for publication

16. J. Bayer, C. Gacek, D. Muthig, and T. Widen. “PuLSE-I:
Deriving Instances from a Product Line Infrastructure,”
submitted for publication

17. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig,
K. Schmid and T. Widen.PuLSETM — Product Line
Software Engineering. Fraunhofer Institute for
Experimental Software Engineering. IESE-Report No.
020.99/E, 1999

18. J. Bayer, J.-F. Girard, M. Würthner, J.-M. DeBaud, M.
Apel, “Transitioning Legacy Assets to a Product Line
Architecture,” in Proceedings of 7th European Software
Engineering Conference(ESEC) / 7th ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE), 1999

19. C. Gacek.Detecting Architectural Mismatches During
System Composition, Ph.D. Dissertation, Center for
Software Engineering, University of Southern California,
Los Angeles, CA 90089-0781, USA, 1998

20. R. Kazman, M. Barbacci, M. Klein, S.J. Carriere, and
S.G. Woods. “Experience with Performing
Architecture Tradeoff Analysis,” inProceedings of the
21st International Conference on Software Engineering
(ICSE 99), 1999, pp. 54-63

21. R. Balzer. “An Architectural Infrastructure for Product
Families,” in Proceedings of Workshop on Development
and Evolution of Software Architecture for Product
Families, Las Palmas de Gran Canaria, Spain, Feb. 1998,
pp.158-160.

22. K.D. Althoff, A. Birk, S. Hartkopf, W. Müller, M. Nick,
D. Surmann, and C. Tautz. “Managing Software
Engineering Experience for Comprehensive Reuse,” in
Proceedings of the 11th Software Engineering and
Knowledge Engineering Conference(SEKE 11), 1999,
pp. 10-19

