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Abstract

An investigation was conducted in the Glenn L. Martin Wind Tunnel

to determine the effects of blade planform variation on the forward-

flight performance off our small-scale rotors. The rotors were 5.417 ft
in diameter and differed only in blade planform geometry. The four

planforms were (1) rectangular, (2) 3:1 linear taper starting at 94

percent radius, (3) 3:1 linear taper starting at 75 percent radius, and

(4) 3:1 linear taper starting at 50 percent radius. Each planform had

a thrust-weighted solidity of 0. 098. The investigation included forward-
flight simulation at advance ratios from 0.14 to 0.43 for a range of rotor

lift and drag coefficients. Among the four rotors, the rectangular rotor

required the highest torque for the entire range of rotor drag coefficients

attained at advance ratios greater than 0.14 for rotor lift coefficients
CL from 0.004 to 0.007. Among the rotors with tapered blades and

for CL ---- 0.004 to 0.007, either the 75-percent tapered rotor or the

50-percent tapered rotor required the least amount of torque for the full
range of rotor drag coefficients attained at each advance ratio. The

performance of the 94-percent tapered rotor was generally between that
of the rectangular rotor and the 75- and 50-percent tapered rotors at

each advance ratio for this range of rotor lift coeffcients.

Introduction

The U.S. Army and NASA have an ongoing pro-

gram to improve helicopter rotor performance and ef-
ficiency through the development of advanced airfoils

and blade planform shapes. As part of this program,
a parametric analytical study (ref. 1) was conducted

to design a main rotor to meet selected aerodynamic

performance goals for the integrated technology ro-
tor. (See ref. 2.) Reference 1 considered linear vari-

ations in planform shapes with taper ratios from 2

to 4 and taper initiation stations from 50 to 95 per-
cent radius. The study in reference 1 indicated unex-

pectedly that for a constant thrust-weighted solidity,

twist, and taper ratio, the configuration that required

the least amount of power to cruise at 170 knots (ad-
vance ratio tt of 0.40) had the blade taper initiation

point nearest the blade tip (95 percent radius). Pre-
vious work had confirmed that alternate rotor blade

designs that combined advanced airfoils, twist, and
linearly tapered planforms were improvements over

the baseline rectangular blades (refs. 3 to 6). How-

ever, the rotor configurations in references 3 to 6 did

not permit an apportionment of the power savings to
the various rotor blade design variables because more

than one variable was changed between the baseline
blade set and the alternate blade set in each case.

In references 3 and 4, the baseline blade set
was rectangular with a twist of -10.9 ° and an

NACA 0012 airfoil from root to tip. The alternate

blade set had a planform that tapered linearly from

50 percent radius to the blade tip, a twist of -14 °,

and three different airfoils distributed along the blade

span. The baseline blade set in reference 5 was rect-
angular with a nonlinear twist distribution and two

Sikorsky airfoils (SC1095 and SC1095 RS) distrib-
uted along the blade span. The alternate blade set

in reference 5 had a planform that tapered linearly
from 80 percent radius to the blade tip, a linear twist

of -16 ° , and three different airfoils distributed span-

wise. In reference 6, tile baseline blade set was rect-

angular with a twist of -9 °, and it used the Hughes
Helicopters HH-02 and NACA 64A006 airfoils. The

alternate blade set in reference 6 had a planform that

tapered linearly from 80 percent radius to the blade
tip, a twist of -12 °, and three different airfoils dis-

tributed along the span.

The work reported in references 7 and 8 indicates

the effect of tip planform shape on rotor performance.
Reference 7 used two sets of rotor blades to show the

effect of blade taper ratio on hover performance. One

set of blades had a planform with a 3:1 linear taper

starting at 80 percent radius, and the second set had

a planform with a 5:1 linear taper also starting at
80 percent radius. In reference 8, the rotor blade

sets had different tip planform shapes (stations >

85 percent radius), but the sets were not closely
related to each other.

Therefore, an experiment v<as initiated to quan-

tify the effects of significant blade planform changes

on the hover and forward-flight performance of small-

scale rotors. The effect of large planform changes on

hover performance was reported in reference 9, and



this report describesthe effectsof thoseplanform
changeson forward-flightperformance.The hover
performanceinvestigationwasconductedin therotor
testcellat theLangley14-by 22-FootSubsonicTun-
nelwith foursmall-scalerotors. Theforward-flight
investigationwasconductedin the GlennL. Martin
WindTunnelwith thesamefoursetsof rotorblades.
Therotorstestedwere5.417ft in diameteranddif-
feredonly in planformgeometry.The planforms
were(1) rectangular,(2) 3:1 linear taperstarting
at 94percentradius,(3)3:1lineartaperstartingat
75percentradius,and (4) 3:1lineartaperstarting
at 50percentradius. Eachplanformhada thrust-
weightedsolidityof 0.098.Theforward-flightinves-
tigationincludedadvanceratiosfrom0.14to 0.43for
arangeof rotor lift anddragcoefficients.

Symbols

The positive directions of forces, angles, and ve-

locities are shown in figure 1.

A balance axial force, lb

a speed of sound, ft/sec

D
CD rotor drag coefficient., -p_R2(f_R)2

CL rotor lift coefficient, L
p_R2(f?R) 2

CQ rotor torque coefficient,
Q

p_r R2(FIR)2 R

c local blade chord, ft

Cq torque-weighted equivalent blade

f_ _(rlR) a d(,.t_)
chord, , ft

fl (r/R)a d(r/R)

ct

D

Dveh

fD

L

My

N

(2

R

thrust-weighted equivalent blade

fl c(r/R) 2 d(r/R)
chord, , ft

f_(r/R) 2 d(_/R)

rotor drag, N sin as + A cos as, ib

( 1pV2"_ lb
= fD _,_ ],

vehicle equivalent parasite area, ft 2

rotor lift, Ncos as - Asin as, lb

rotor hover tip Mach number, 0__

balance normal force, lb

rotor shaft torque, ft-lb

rotor radius, ft

r spanwise distance along blade radius
measured from center of rotation, ft

SLS sea-level atmospheric density condi-
tions at 59°F

V free-stream velocity, ft/sec

W weight, lb

as rotor shaft angle of attack, positive

aft, deg

@ rotor blade collective pitch angle at

:_ = 0.75, positive nose up, deg

O1 twist angle built into rotor blade,

positive nose up, dcg

V
# rotor advance ratio, 17R

p mass density of test medium, slugs/ft a

a area solidity, 4f_ cd(r/R)nR

aQ torque-weighted solidity, 4_

a T thrust-weighted solidity,

_b rotor blade azimuth angle, deg

f_ rotor rotational velocity, rad/see

Subscript:

rect rectangular

Wind Tunnel and Models

Wind Tunnel

The Glenn L. Martin Wind Tunnel (located at

the University of Maryland, College Park) is a closed-

circuit, single-return, subsonic tunnel that can be op-
erated at Mach numbers up to 0.32 at atmospheric

pressure (ref. 10). Figure 2 shows a schematic of
the tunnel. The tunnel test section is 7.75 ft high,

11 ft wide, and 15 ft long, and it has corner fillets.

This facility permits tests of small-scale model ro-

tors at full-scale tip Mach numbers at low Reynolds
numbers.

Model Description

Rotor blades. Figure 3 shows the planform

geometry, airfoil distribution, and twist distribution

of the four blade sets. As previously mentioned, the

planform geometry was the only difference between
the blade sets, so the effect of planform geometry on

forward-flight performance can be quantified.

The four blade sets were 13-percent-size repre-

sentations of blades for a conceptual high-speed,

lightweight military helicopter. The full-scale values



ofsomeimportantparametersforthishelicopterare
asfollows:

R, ft ................. 20.6

f_R, ft/sec ............... 729

fD, ft2 ................ 10.5

W, lb ................ 8500

CL (4000 ft/95°F) ......... 0.00625

CL (SLS) ............. 0.00505

The thrust-weighted solidity (a T = 0.098), twist
(O1 = -13°), and airfoil distribution were thus se-

lected for this class of vehicle. The tapered blades

incorporated a 3:1 taper ratio (root chord over tip
chord), with the tapers initiated at three different

radial stations. A 3:1 taper ratio was chosen be-

cause it was a good compromise between aerody-

namic performance and fabrication limitations. For
some conditions, a rotor with 4:1 taper ratio blades

was predicted to provide a small reduction in power

compared with a rotor with 3:1 taper ratio blades.

(See ref. 1.) However, the smaller tip size for a 4:1

taper ratio blade of 13 percent size makes it more
difficult to build and still retain the desired struc-

tural characteristics. A linear twist distribution was

used to simplify the model fabrication. The area

solidity a, thrust-weighted solidity air', and torque-

weighted solidity aQ for the rotor blades are listed
in table 1. No attempt was made to aeroelastically

scale the internal structure of the blades to repre-
sent full-scale blades. The blades were made with a

D-spar of graphite epoxy, a trailing edge of balsa

wood, and an outer skin of fiberglass; this combi-
nation of materials resulted in very stiff blades.

Table 1. Solidity for Rotor Blades

Rotor a o"T OQ

Rectangular ..... 0.098 0.098 0.098
94-percent taper 0.102 0.098 0.096

75-percent taper 0.114 0.098 0.092

50-percent taper 0.126 0.098 0.090

The three rotorcraft (RC) airfoils used for these

rotors were developed by the U.S. Army. (See fig. 4.)
The RC(4)-10 airfoil, designed for application to the

inboard blade region, has high maximum lift coef-

ficients and moderately high drag divergence Mach

numbers at low lift coefficients. The RC(3)-08 airfoil
has a high drag divergence Mach number at low lift

coefficients, so this airfoil was applied to the rotor

blade tip region to reduce compressibility effects on

the advancing side of the rotor disk. The RC(3)-10

airfoil has drag divergence Mach number character-
istics and maxinmm lift coefficients between those of

the RC(4)-10 and the RC(3)-08. Thus, the RC(3)-10
airfoil was used to make the transition between those

two airfoil sections. Smooth transitions were made

between the different airfoil sections over 5 percent
of the blade radius. The two-dimensional aerody-

namic characteristics of the RC(4)-10 are described
in reference 11, and those of both the RC(3)-10 and

RC(3)-08 are described in reference 12.

Test bed. The four sets of rotor blades were

tested with the model rotor system shown in fig-
ure 5. This system consists of a fully articulated

four-bladed rotor hub with coincident lead-lag and

blade-flap hinges, a drive shaft, rotor controls, and

a gear box of 90 ° with a 2.75:1 speed reduction ra-

tio. The system is powered by a variable-frequency
synchronous motor that is rated at 100 hp at

13500 rpm. The rotor hub and controls are sus-

pended on a six-component strain-gauge balance and

are isolated from tile gearbox and motor by a flexi-

ble diaphragm coupling. The entire assembly is en-
closed in a streamlined fiberglass outer shell and is

supported on a post rigidly attached to the tunnel

floor. The assembly contains a pitch hinge to tilt the
rotor shaft in the fore and aft directions.

To vary the shaft angle of attack, the entire as-

sembly is pitched by means of a remotely controlled
hydrmflic actuator. Blade collective pitch and lat-

eral and longitudinal cyclic pitch are input to the

rotor through a swashplate. The swashplate is re-

rnotely positioned with three electromechanical ac-
tuators mounted 90 ° apart. The collective actuator

assembly moves both the swashplate and the cyclic

control actuator assembly and thus independently
determines the blade collective pitch. This arrange-

ment eliminates the mixing of collective and cyclic

pitch inputs through use of control laws.

Instrumentation. Operation of the model

is conducted through use of the instrumentation
mounted on the model rotor system. This instru-

mentation permits a continuous display of the control

settings, rotor forces and moments, and blade angu-
lar positions. The swashplate position and thus blade

pitch inputs are determined by calibrated linear po-
tentiometers mounted at each actuator. The blade-

flap and lead-lag angles are measured by Hall-effect
transducers mounted at the blade-flap and lead-

lag hinges. The rotating-blade data are transferred
through a 60-channel slip-ring assembly mounted on

the gearbox along the shaft axis. All strain-gauge
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signalsareconditionedbybridgeamplifierswithanti-
aliasingfiltersset to 1 kHz. Therotor shaftspeed
is measuredwith 1-per-revand60-per-revdisksand
a photocellpickup. The rotor forcesandmoments
aremeasuredby a six-componentstrain-gaugebal-
ancethat is fixedwith respectto therotorshaftbut
pitcheswith the assembly.Rotor lift anddragare
determinedfromthe measuredbalancenormMand
axialforces.Forcesandmomentsonthegeneralized-
bodyfairingarenot detected by the balance. Tile ro-
tor torque is measured independently with a torque

disk that is instrumented with a strain-gauge bridge
and is attached to the rotor shaft. The rotor shaft tilt
is measured with an electronic inclinometer mounted

near the rotor balance.

Procedures

This investigation determined tile effect of plan-
form variation on the aerodynamic performance of

four sets of rotors. As much as possible, the rotors
were tested at. the same nominal conditions defined

by #, f_, as, and O. The range of # covered in this

test was 0.14 to 0.43. The rotor tip speed (# = 0)

was nominally 729 ft/scc, which resulted in an Af T

range of 0.627 (# = 0.43) to 0.635 (_ = 0.14) be-
cause of changes in the tunnel temperature. With

the tip speed set for each test point in forward flight,
the tunnel conditions were adjusted to give the de-

sired value of #. Then with a constant rotor shaft

angle of attack, a collective pitch sweep was initi-

ated. To facilitate data acquisition and reduce blade

loads, the rotor cyclic pitch was used to remove the
first harmonic flapping with respect to the rotor shaft

at each test point. The maximum obtainable values

of #, CL, and C D were constrained by the inabil-
ity of the control system to limit the blade-flapping

response quickly when the blades were operated at

high loading conditions.

Model deadweight tares were determined through-

out the range of shaft angle of attack with the blades

installed and with them removed. Aerodynamic to-
tor hub tares were determined with the hub rotat-

ing and the blades removed throughout the ranges

of shaft angle of attack and advance ratio that were

investigated. Both deadweight and aerodynamic hub
tares have been removed from the data. Corrections

for tunnel wall effects were applied to the data to

obtain a corrected free-stream dynamic pressure and

rotor shaft angle. (See refs. 13 and 14.) The maxi-
mum correction to as because of tunnel wall effects

was about 1.4 ° . The corrected rotor shaft angle was

displayed, so the operator of the rotor model could

make small adjustments to the preset value of as un-
til the corrected c_s matched the desired value. The

values of CL, CD, and C o were obtained from the
average of 2048 data samples taken over a nominal
128 rotor revolutions at each test condition.

Data Quality

The performance data measured during this in-

vestigation was examined for repeatability and is re-

ported in tile appendix. For the four blade sets,
collective pitch sweeps were typically repeated for a

single _ at some advance ratios. To minimize the

data acquisition time for these repeat sweeps, no at-

tempt was made to exactly duplicate the collective
and cyclic angles used for the first sweep. Thus, the

repeatability is based on the closeness of the two

faired curves drawn through the two sets of data

points rather than on each pair of data points. The

repeatability of these data is judged to be very good.

Presentation of Results

The results of this investigation were reduced to

coefficient form and are presented in figures 6 to 43,
as shown in table 2. These performance parameters

were not divided by the rotor solidity because the

four different types of blades (tapered and rectangu-
lar) had the same thrust-weighted solidity.

Discussion of Results

The basic data are presented in figures 6 to 35,

and the CD versus CQ results at constant values of
the rotor lift coefficients (figs. 36 to 39) were de-
termined from a cross plot. of the basic data. The =

CQ versus p results at constant rotor lift coefficients
(figs. 40 to 42) wcrc determined from a cross plot of

the CD versus CQ results. For example, the CQ ver-
sus # result for CL = 0.006 (fig. 41) was obtained

from a record of the CQ value, at each advance ratio,
that corresponds to the appropriate value of the ro-
tor drag coefficient (equal in magnitude to the vehicle --
drag coefficient) obtained from figure 38. The vehi- _

cle drag coefficient was determined from the vehicle

drag Dye h that was defined through use of an equiv-

alent parasite area as follows: Dveh = fD (½PV2) • -2

A value of 10.5 ft 2 was selected to represent fD for a ;

modern, lightweight military helicopter. The CQ ver-
sus p results are presented for lift coefficients of 0.005

and 0.006. These values were chosen because they are

close to the level-flight values at SLS (CL = 0.00505)

and 4000 ft/95°F (C L = 0.00625) atmospheric condi-
tions for the selected helicopter and they are conve- -

nient to use in making cross plots. Also, a CQ versus
tt result is presented for a lift coefficient (CL = 0.007)
above the level-flight values.



Table2. PerformanceParametersfor Rotors

Parameter
C L vs C D

and

CL vs Co

#

0.14 I
0.19 I

0.23!

0.24
0.27

0.30

0.31

0.35
0.36

0.40

0.43

(a) Basic characteristics

Figures for rotor planform--

Rectangular 94-percent taper 75-percent taper 50-percent taper

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28
29

30

31

32

33

34

35

Parameter

C D VS CQ

CQ vs_

CO. - CQ,rcct

CQ,rect

(b) Comparison of rotors

CL
i0.004

0.005

0.006
0.007

0.005

0.006
0.007

0.005

0.006
0.007

Figures for rotor planform

# Rectangular 75-percent taper 50-percent taper

0.14 0.40 36

0.14 0.36 37

0.14 0.36 38

0.14 0.27 39

0.14 0.31 40

0.14 0.31 41

0.14-0.27 42

0.14 0.30 43

0.14 0.30 43

0.14 O.27 43

94-percent taper
36

37

38

39

4O

41

42

36
37

38

39

40

41

42

43

43

43

43

43

43

36

37

38

39

40

41
42

43

43
43

For the four rotors at lift coefficients from 0.004

to 0.007, CD varies linearly with CQ at all advance

ratios (figs. 36 to 39). Among the four rotors,

the rectangular rotor requires the highest CQ (and
thus the greatest power) for the entire range of CD

attained at advance ratios greater than 0.14 for the
four rotor lift coefficients, Only at the lowest advance

ratio for CL = 0.006 and 0.007 and for CD <_ 0.00025

is the CQ required for any of the tapered rotors
(the 94-percent tapered rotor in this case) as high

as the CQ required for the rectangular rotor. Among
the rotors with tapered blades, either the 75-percent

tapered rotor or the 50-percent tapered rotor requires

the least amount of torque at each advance ratio. For

CL = 0.004 to 0.006, the 75-percent tapered rotor has
the lower torque coefficients for all values of CD at

# = 0.14 and 0.19, whereas the 50-percent tapered

rotor has the lower values of CQ for all values of
CD at # = 0.30 and 0.31. The 75-percent tapered
rotor and the 50-percent tapered rotor have nearly

the same performance at # ---- 0.23 and 0.27 for

many values of CD at the four rotor lift coefficients.

The performance of the 94-percent tapered rotor is

generally between that of the rectangular rotor and
the 75- and 50-percent tapered rotors at each advance
ratio at the four rotor lift coefficients.
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Theperformanceof the four rotorsin termsof
CQ versus p is compared in figures 40 to 42 for
lift coefficients from 0.005 to 0.007. The trends

due to planform variation shown in these figures
are consistent with the previous discussion. The

advance ratio for the minimum C o changes as the lift
coefficient increases. For CL = 0.005, the minimum

CQ for each rotor occurs at p = 0.14, but for
CL = 0.007 the minimum CQ for each rotor occurs

near # = 0.19. As expectcd, tile CQ level for the four
rotors increases as CL increases.

Figure 43 shows the performance of the tapered

rotors expressed in terms relative to the rectangular

rotor ((CQ CQ,rect) �Co,feet). For l* <- 0.23, the
75-percent tapcred rotor provides the maxinmm im-
provement, which is about 8 percent for the three

rotor lift coefficients. For # > 0.23, the 50-percent

tapered rotor or, for some conditions, both the
50- and 75-percent tapered rotors provide the maxi-

mum improvement. The maximum improvement for

this range of # is between 7 and 10 percent for the
three rotor lift coefficients. These effects of blade

planform variation on rotor performance are not in

agreement with the analytical trends presented in ref-
erence 1 for an advance ratio of 0.40. Among the four

rotors of this investigation, the results of reference 1

suggest that the 94-percent tapered rotor should re-

quire the least amount of torque. In this study, how-
cver, the 50- and 75-percent tapered rotors required

the least amount of torque.

Conclusions

An investigation was conducted in the Glenn
L. Martin Wind Tunnel to determine the effects of

blade planform variation on the forward-flight per-
formance of four small-scale rotors. The rotors were

5.417 ft in diameter and differed only in planform

geometry. The four planforms were (1) rectangular,

(2) 3:1 linear taper starting at 94 percent radius,

(3) 3:1 linear taper starting at 75 percent radius,
and (4) 3:1 linear taper starting at 50 percent ra-

dius. Each planform had a thrust-weighted solidity
of 0.098. The investigation included forward-flight
simulation at advance ratios from 0.14 to 0.43 for a

range of rotor lift and drag coefficients. Examination

of these data led to the following conclusions.

1. Among the four rotors, the rectangular rotor

required the highest torque for the entire range of

rotor drag coefficients attained at values of advance
ratio # from 0.19 to 0.36 for rotor lift coefficients CL

of 0.004 and 0.005. For CL = 0.006 and 0.007, this

same trend was indicated for #'s from 0.19 to 0.31

and 0.19 to 0.27, respectively. Among the rotors

6

with tapered blades and for CL = 0.004 to 0.007,

either the 75-percent tapered rotor or the 50-percent

tapered rotor required the least amount of torque
for the full range of rotor drag coefficients attained

at each advance ratio tested. For this range of CL,

the performance of the 94-percent tapered rotor was

generally between that of the rectangular rotor and
the 75- and 50-percent tapered rotors at each #.

2. For CL = 0.005 and 0.006 and a vehicle equiv-
alent parasite area fD of 10.5 ft 2, the rectangular ro-

tor required the most torque at advance ratios from

0.14 to 0.31. For the same range of CL, the torque
required for the 94-percent tapered rotor at all val-

ues of # was generally less than that for the rect-

angular rotor but higher than that for the 75- and

50-percent tapered rotors. The 75-percent tapered
rotor required the lowest torque for # _< 0.23 and the

50-percent tapered rotor required the lowest torque

for # = 0.27 to 0.30.

3. The torque required for the 75-percent tapered

rotor at tt _< 0.23, fD = 10.5 ft 2, and CL = 0.005 to

0.007 represents an improvement of 5 to 8 percent
over that for the rectangular rotor. For 0.23 < tt <

0.30 with the same fD and range of CL, the torque

required for the 50-percent tapered rotor represents
an improvement of 7 to 10 percent over that for the

rectangular rotor.

NASA Langley Research Center
Hampton, VA 23665-5225
March 11, 1992
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Figure 3. Description of rotor blades.
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(a) GenerMized-body fairing installed.

L-92-17

Figure 5.

L-92-18

(b) Cutaway view.

Model rotor system installed in the Glenn L. Martin Wind Tunnel.
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Figure 6. Basic forward-flight characteristics of rectangular rotor for p = 0.14,
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Figure 7. Basic forward-flight characteristics of rectangular rotor for # = 0.19.

14



.012

.010

.OO8

CL .006

.004

.002

0 a, = -1 °

[] as = -2 °

0 a, = -4 °

/X as = -6 °

\

.=IM=I=.IJ_._J=_!JJJJUULtLLLLIlII=IIIIIIltl I=|ltllllllllllllll ==lllllllltllllllll

-.0020 -.0016 -.0012 -.0008

CD

-.0004 0 .0004

(a) CL versus CD-

.012

.010

.008

eL .006

.004

.OO2

0 as = - 1°

[] as = - 2°

0 as = -4 °

/x as = - 6°

l __

_llUSlll|ll=llllll IIIIl=l|ll=ll=lllll LIJ=ll=llllllll|ll= llllll|llll|l=llll+ IIIIn_nllllllll=l illl=llll=llllll,ll ==II==I,I==I=IT=I=I Illll=ll|llll|llllll

0 .0001 .0002 .0003 .0004 .0005 .0006 .0007 .0008

CQ

(b) CL versus CQ.

Figure 8. Basic forward-flight characteristics of rectangular rotor for p = 0.23.
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Figure 9. Basic forward-flight characteristics of rectangular rotor for # = 0.27.
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Figure 10. Basic forward-flight characteristics of rectangular rotor for # = 0.31.
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Figure 12. Basic forward-flight characteristics of 94-percent tapered rotor for p = 0.14.

19



.012

.010

.008

Ck .006

.004

.002

[] a, = - 2 °`

<> a.. = -4 °

A a, = -6 °

............\\
\\

t.....,,,,.,.,,.I.,. II,,HIII,II|||II,, .=llllll,a,l.=.l.,. IIll.=l=llllJlllllJ ,,,,1=Ill,Ill,Ill,, ,,l.l.|lt.|llll,,,,

-.0020 -.0016 -.0012 -.0008 -.0004 0 .0004

CD

(a) CL versus CD.

.012

.010

[] a, = - 2 °

0 a, = -4 °

A a. = -6 °

_=

oo8 i /_//_

CL .006 ! Yy

.002 _ --

(b) CL versus C O.

Figure 13. Basic forward-flight characteristics of 94-percent tapered rotor for tt = 0.19.
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Figure 14. Basic forward-flight characteristics of 94-percent tapered rotor for # = 0.24.
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Figure 15. Basic forward-flight characteristics of 94-percent tapered rotor for # = 0.27.
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Figure 16. Basic forward-flight characteristics of 94-percent tapered rotor for # = 0.31.
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Figure 17. Basic forward-flight characteristics of 94-percent tapered rotor for p = 0.36.
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Figure 18. Basic forward-flight characteristics of 94-percent tapered rotor for # = 0.40.
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Figure 19. Basic forward-flight characteristics of 94-percent tapered rotor for # = 0.43.
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Figure 20. Basic forward-flight characteristics of 75-percent tapered rotor for # = 0.14.
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Figure 2i. Basic forward-flight characteristics of 75-percent tapered rotor for # = 0.19.
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Figure 22. Basic forward-flight characteristics of 75-percent tapered rotor for p = 0.23.
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Figure 23. Basic forward-flight characteristics of 75-percent tapered rotor for/_ = 0.27.
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Figure 24. Basic forward-flight characteristics of 75-percent tapered rotor for p = 0.30.
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Figure 25. Basic forward-flight characteristics of 75-percent tapered rotor for/2 = 0.35.
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Figure 26. Basic forward-flight characteristics of 75-percent tapered rotor for # = 0.40.
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Figure 27. Basic forward-flight characteristics of 75-percent tapered rotor for # = 0.43.
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Figure 28. Basic forward-flight characteristics of 50-percent tapered rotor for # = 0.14.
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Figure 29. Basic forward-flight characteristics of 50-percent tapered rotor for tt = 0.19.
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Figure 30. Basic forward-flight characteristics of 50-percent tapered rotor for # = 0.23.
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Figure 31. Basic forward-flight characteristics of 50-percent tapered rotor for p = 0.27.
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Figure 32. Basic forward-flight characteristics of 50-percent tapered rotor for p = 0.30.
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Figure 33. Basic forward-flight characteristics of 50-percent tapered rotor for # = 0.35.
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Figure 34. Basic forward-flight characteristics of 50-percent tapered rotor for I_ = 0.40.
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Figure 351 Basic forward-flight characteristics of 50-percent tapered rotor for # = 0.43.
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Figure 36. Variation of rotor drag coefficient with rotor torque coefficient for C L = 0.004.
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Figure 37. Variation of rotor drag coefficient with rotor torque coefficient for e L = 0.005.
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Appendix

Data Repeatability

The repeatability of the performance data (basic characteristics) for the four blade sets is presented in

figures A1 to A21, as shown in table A1. For a constant CL, the maximum difference between two faired CL

versus CD curves is about 0.000025 in CD, and the maximum difference between two faired CL versus CQ

curves is about 0.00001 in CQ.

Tablc A1. Performance Data for Blade Sets

Parameter

C L vs C D

and

CL vs Co

#

0.14 -2

.19 -2

.23 -2

.24 -4

.27 -4

.30 -4

.30 -6

.31 -4

.35 -6

.35 -8

.36 -6

.40 -7

.40 -8

.43 -7

Figures for rotor planform--

c_, deg Rectangular 94-perccnt taper 75-percent taper 50-percent taper

A1

A2

A3

A4

A5

A6

A7

A8

A9

AIO

All

A12

A13

A14

A15

A16

A16

A17

A18

A19

A20

A21
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Figure A1. Repeatability of basic forward-flight characteristics of rectangular rotor for # = 0.14.
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Figure A2. Repeatability of basic forward-flight characteristics of rectangular rotor for # = 0.23•
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Figure A4. Repeatability of basic forward-flight characteristics of 94-percent tapered rotor for p = 0.14.
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Figure A5. Repeatability of basic forward-flight characteristics of 94-perccnt tapered rotor for # = 0.19.
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Figure A6. Repeatability of basic forward-flight characteristics of 94-percent tapered rotor for # = 0.24.
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Figure A7. Repeatability of basic forward-flight characteristics of 94-percent tapered rotor for # = 0.27.
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Figure A8. Repeatability of basic forward-flight characteristics of 94-percent tapered rotor for # = 0.31.
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Figure A9. Repeatability of basic forward-flight characteristics of 94-percent tapered rotor for # = 0.36.
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Repeatability of basic forward-flight characteristics of 94-percent tapered rotor for p = 0.40.
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Figure All. Repeatability of basic forward-flight characteristics of 94-percent tapered rotor for p = 0.43.
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Figure A12. Repeatability of basic forward-flight characteristics of 75-percent tapered rotor for # = 0.14.
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Figure A13. Repeatability of basic forward-flight characteristics of 75-percent tapered rotor for p = 0.23.
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Figure A14. Repeatability of basic forward-flight characteristics of 75-percent tapered rotor for # = 0.27.
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Figure A15. Repeatability of basic forward-flight characteristics of 75-percent tapered rotor for p = 0.30.
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Figure A16. Repeatability of basic forward-flight characteristics of 75-percent tapered rotor for # = 0.35.
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Figure A18. Repeatability of basic forward-flight characteristics of 50-percent tapered rotor for # = 0.23.
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Figure A19. Repeatability of basic forward-flight characteristics of 50-percent tapered rotor for # = 0.30.
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Figure A20. Repeatability of basic forward-flight characteristics of 50-percent tapered rotor for tL = 0.35.
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Figure A21. Repeatability of basic forward-flight characteristics of 50-percent tapered rotor for p = 0.40.
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