298 research outputs found
Thou Shalt is not You Will
In this paper we discuss some reasons why temporal logic might not be
suitable to model real life norms. To show this, we present a novel deontic
logic contrary-to-duty/derived permission paradox based on the interaction of
obligations, permissions and contrary-to-duty obligations. The paradox is
inspired by real life norms
Exploring Spirituality in Teaching Within a Christian School Context Through Collaborative Action Research
This article reports on a collaborative action research project conducted in New Zealand, during 2012, exploring spirituality in teaching within a Christian school context. The experienced primary school teacher participant chose to take action around the issue of personal fear and insecurity which were believed to be hindering professional growth and relationships. Through self-directed inquiry, critical reflective journaling, Bible study, fellowship and prayer with trusted friends, the teacher experienced a renewed sense of peace and freedom in Christ. This personal transformation was believed to be influential on subsequent professional practice, assisting the teacher to become more relational, responsive and compassionate. The findings provide a rich description of the participant’s spirituality, the lived reality of a person’s spiritual life. This report will be of interest to teachers, teacher-leaders and teacher-educators who desire to explore Christian spirituality through practitioner-led inquiry
Potassium-selective block of barium permeation through single KcsA channels
Ba2+, a doubly charged analogue of K+, specifically blocks K+ channels by virtue of electrostatic stabilization in the permeation pathway. Ba2+ block is used here as a tool to determine the equilibrium binding affinity for various monovalent cations at specific sites in the selectivity filter of a noninactivating mutant of KcsA. At high concentrations of external K+, the block-time distribution is double exponential, marking at least two Ba2+ sites in the selectivity filter, in accord with a Ba2+-containing crystal structure of KcsA. By analyzing block as a function of extracellular K+, we determined the equilibrium dissociation constant of K+ and of other monovalent cations at an extracellular site, presumably S1, to arrive at a selectivity sequence for binding at this site: Rb+ (3 µM) > Cs+ (23 µM) > K+ (29 µM) > NH4+ (440 µM) >> Na+ and Li+ (>1 M). This represents an unusually high selectivity for K+ over Na+, with |ΔΔG0| of at least 7 kcal mol−1. These results fit well with other kinetic measurements of selectivity as well as with the many crystal structures of KcsA in various ionic conditions
Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir
Free-energy changes are essential physicochemical quantities for understanding most biochemical processes. Yet, the application of accurate thermodynamic-integration (TI) computation to biological and macromolecular systems is limited by finite-sampling artifacts. In this paper, we employ independent-trajectories thermodynamic-integration (IT-TI) computation to estimate improved free-energy changes and their uncertainties for (bio)molecular systems. IT-TI aids sampling statistics of the thermodynamic macrostates for flexible associating partners by ensemble averaging of multiple, independent simulation trajectories. We study peramivir (PVR) inhibition of the H5N1 avian influenza virus neuraminidase flexible receptor (N1). Binding site loops 150 and 119 are highly mobile, as revealed by N1-PVR 20-ns molecular dynamics. Due to such heterogeneous sampling, standard TI binding free-energy estimates span a rather large free-energy range, from a 19% underestimation to a 29% overestimation of the experimental reference value (−62.2 ± 1.8 kJ mol−1). Remarkably, our IT-TI binding free-energy estimate (−61.1 ± 5.4 kJ mol−1) agrees with a 2% relative difference. In addition, IT-TI runs provide a statistics-based free-energy uncertainty for the process of interest. Using ∼800 ns of overall sampling, we investigate N1-PVR binding determinants by IT-TI alchemical modifications of PVR moieties. These results emphasize the dominant electrostatic contribution, particularly through the N1 E277−PVR guanidinium interaction. Future drug development may be also guided by properly tuning ligand flexibility and hydrophobicity. IT-TI will allow estimation of relative free energies for systems of increasing size, with improved reliability by employing large-scale distributed computing
Catalytic Cycle of Multicopper Oxidases Studied by Combined Quantum- and Molecular-Mechanical Free-Energy Perturbation Methods
We have used combined quantum mechanical and molecular mechanical free-energy perturbation
methods in combination with explicit solvent simulations to study the reaction mechanism of the
multicopper oxidases, in particular the regeneration of the reduced state from the native
intermediate. For 52 putative states of the trinuclear copper cluster, differing in the oxidation states
of the copper ions and the protonation states of water- and O2-derived ligands, we have studied
redox potentials, acidity constants, isomerisation reactions, as well as water- and O2 binding
reactions. Thereby, we can propose a full reaction mechanism of the multicopper oxidases with
atomic detail. We also show that the two copper sites in the protein communicate so that redox
potentials and acidity constants of one site are affected by up to 0.2 V or 3 pKa units by a change
in the oxidation state of the other site
The Free Energy Landscape of Small Molecule Unbinding
The spontaneous dissociation of six small ligands from the active site of FKBP
(the FK506 binding protein) is investigated by explicit water molecular dynamics
simulations and network analysis. The ligands have between four
(dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms,
and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the
FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each
ligand) are grouped according to a set of intermolecular distances into nodes of
a network, and the direct transitions between them are the links. The network
analysis reveals that the bound state consists of several subbasins, i.e.,
binding modes characterized by distinct intermolecular hydrogen bonds and
hydrophobic contacts. The dissociation kinetics show a simple (i.e.,
single-exponential) time dependence because the unbinding barrier is much higher
than the barriers between subbasins in the bound state. The unbinding transition
state is made up of heterogeneous positions and orientations of the ligand in
the FKBP active site, which correspond to multiple pathways of dissociation. For
the six small ligands of FKBP, the weaker the binding affinity the closer to the
bound state (along the intermolecular distance) are the transition state
structures, which is a new manifestation of Hammond behavior. Experimental
approaches to the study of fragment binding to proteins have limitations in
temporal and spatial resolution. Our network analysis of the unbinding
simulations of small inhibitors from an enzyme paints a clear picture of the
free energy landscape (both thermodynamics and kinetics) of ligand
unbinding
- …