68 research outputs found

    Differentielle Expression von Östrogenrezeptoren und Ki67 im normalen Mammagewebe und in proliferativen Mammaläsionen

    Full text link
    Zur Unterscheidung der Malignitätspotentiale verschiedener proliferativer Läsionen der weiblichen Brust, wurden normales Mammagewebe, DH, LN, FEA, ADH und DCIS in immunhistochemischen Doppelmarkierungen auf die Koexpression der luminalen Zytokeratine 8/18, der basalen Zytokeratine 5/6, des Östrogenrezeptors ER sowie des Proliferationsmarkers Ki67 untersucht. Die Ergebnisse bestätigen, dass die DH den benignen proliferativen Läsionen zuzuordnen ist. Anhand von Malignitätskriterien wie steigender Proliferationsrate und Koexpression von ER und Ki67 in CK8/18 positiven Tumorzellen lassen sich die malignen Vorläuferläsionen LN, FEA, ADH und DCIS in den angewandten Doppelfärbungen eindeutig von der DH und dem Normalgewebe abgrenzen. Die Zuordnung der proliferierenden Zellen zu einem Immunphänotyp gibt einen funktionellen Einblick aus welcher Ursprungszelle des Progenitorzellmodells die Läsion entstanden ist

    Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    Get PDF
    Abstract. Ground-based microwave radiometers (MWRs) offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL) with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP) models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes) require an accurate representation of the differences between model (background) and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O–B). Monitoring of O–B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O–B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB) measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O–B monitoring can effectively detect instrument malfunctions. O–B statistics (bias, standard deviation, and root mean square) for water vapour channels (22.24–30.0 GHz) are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ∼  2–2.5 K) towards the high-frequency wing ( ∼  0.8–1.3 K). Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O–B statistics for temperature channels show different behaviour for relatively transparent (51–53 GHz) and opaque channels (54–58 GHz). Opaque channels show lower uncertainties (< 0.8–0.9 K) and little variation with elevation angle. Transparent channels show larger biases ( ∼  2–3 K) with relatively low standard deviations ( ∼  1–1.5 K). The observations minus analysis TB statistics are similar to the O–B statistics, suggesting a possible improvement to be expected by assimilating MWR TB into NWP models. Lastly, the O–B TB differences have been evaluated to verify the normal-distribution hypothesis underlying variational and ensemble Kalman filter-based DA systems. Absolute values of excess kurtosis and skewness are generally within 1 and 0.5, respectively, for all instrumental sites, demonstrating O–B normal distribution for most of the channels and elevations angles

    On methods for assessment of the influence and impact of observations in convection-permitting numerical weather prediction

    Full text link
    In numerical weather prediction (NWP), a large number of observations are used to create initial conditions for weather forecasting through a process known as data assimilation. An assessment of the value of these observations for NWP can guide us in the design of future observation networks, help us to identify problems with the assimilation system, and allow us to assess changes to the assimilation system. However, the assessment can be challenging in convection-permitting NWP. First, the strong nonlinearity in the forecast model limits the methods available for the assessment. Second, convection-permitting NWP typically uses a limited area model and provides short forecasts, giving problems with verification and our ability to gather sufficient statistics. Third, convection-permitting NWP often makes use of novel observations, which can be difficult to simulate in an observing system simulation experiment (OSSE). We compare methods that can be used to assess the value of observations in convection-permitting NWP and discuss operational considerations when using these methods. We focus on their applicability to ensemble forecasting systems, as these systems are becoming increasingly dominant for convection-permitting NWP. We also identify several future research directions: comparison of forecast validation using analyses and observations, the effect of ensemble size on assessing the value of observations, flow-dependent covariance localization, and generation and validation of the nature run in an OSSE.Comment: 35 page

    Observing convective aggregation

    Get PDF
    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad a distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network

    Iron–platinum–arsenide superconductors Ca<sub>10</sub>(Pt<sub>n</sub>As<sub>8</sub>)(Fe<sub>2−x</sub>Pt<sub>x</sub>As<sub>2</sub>)<sub>5</sub>

    Get PDF
    An overview of the crystal structures and physical properties of the recently discovered iron-platinum-arsenide superconductors, Ca-10(PtnAs8)(Fe2-xPtxAs2)(5) (n = 3 and 4), which have a superconducting transition temperature up to 38K, is provided. The crystal structure consists of superconducting Fe2As2 layers alternating with platinum-arsenic layers, PtnAs8. The upper critical field H-c2, hydrostatic pressure dependence of superconducting transition temperature T-c, and normal-state magnetic susceptibility are reported
    • …
    corecore