137 research outputs found
Embedding and assembly of ultrathin chips in multilayer flex boards
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Purpose â The purpose of this paper is to present results from the EC funded project SHIFT (Smart High Integration Flex Technologies) on the embedding in and the assembly on flex substrates of ultrathin chips.
Design/methodology/approach â Methods to embed chips in flex include flip-chip assembly and subsequent lamination, or the construction of a separate ultra-thin chip package (UTCP) using spin-on polyimides and thin-film metallisation technology. Thinning and separation of the chips is done using a âdicing-by-thinningâ method.
Findings â The feasibility of both chip embedding methods has been demonstrated, as well as that of the chip thinning method. Lamination of four layers of flex with ultrathin chips could be achieved without chip breakage. The UTCP technology results in a 60 mm package where also the 20mm thick chip is bendable.
Research limitations/implications â Further development work includes reliability testing, embedding of the UTCP in conventional flex, and construction of functional demonstrators using the developed technologies.
Originality/value â Thinning down silicon chips to thicknesses of 25mm and lower is an innovative technology, as well as assembly and embedding of these chips in flexible substrates.EC/FP6/EU/507745/Smart high-integration flex technologies/SHIF
High count rate {\gamma}-ray spectroscopy with LaBr3:Ce scintillation detectors
The applicability of LaBr3:Ce detectors for high count rate {\gamma}-ray
spectroscopy is investigated. A 3"x3" LaBr3:Ce detector is used in a test setup
with radioactive sources to study the dependence of energy resolution and photo
peak efficiency on the overall count rate in the detector. Digitized traces
were recorded using a 500 MHz FADC and analysed with digital signal processing
methods. In addition to standard techniques a pile-up correction method is
applied to the data in order to further improve the high-rate capabilities and
to reduce the losses in efficiency due to signal pile-up. It is shown, that
{\gamma}-ray spectroscopy can be performed with high resolution at count rates
even above 1 MHz and that the performance can be enhanced in the region between
500 kHz and 10 MHz by using pile-up correction techniques
The decay of quadrupole-octupole states in Ca and Ce
Background: Two-phonon excitations originating from the coupling of two
collective one-phonon states are of great interest in nuclear structure
physics. One possibility to generate low-lying excitations is the coupling
of quadrupole and octupole phonons.
Purpose: In this work, the -decay behavior of candidates for the
state in the doubly-magic nucleus Ca and in
the heavier and semi-magic nucleus Ce is investigated.
Methods: experiments have been carried out at the
High Intensity -ray Source (HIS) facility in combination with
the high-efficiency -ray spectroscopy setup consisting of
HPGe and LaBr detectors. The setup enables the acquisition of
- coincidence data and, hence, the detection of direct decay
paths.
Results: In addition to the known ground-state decays, for Ca the
decay into the state was observed, while for Ce the direct
decays into the and the state were detected. The experimentally
deduced transition strengths and excitation energies are compared to
theoretical calculations in the framework of EDF theory plus QPM approach and
systematically analyzed for isotones. In addition, negative parities for
two states in Ca were deduced simultaneously.
Conclusions: The experimental findings together with the theoretical
calculations support the two-phonon character of the excitation in the
light-to-medium-mass nucleus Ca as well as in the stable even-even
nuclei.Comment: 11 pages, 6 figures, as accepted in Phys. Rev.
Fragmentation and systematics of the Pygmy Dipole Resonance in the stable N=82 isotones
The low-lying electric dipole (E1) strength in the semi-magic nucleus 136Xe
has been measured which finalizes the systematic survey to investigate the
so-called pygmy dipole resonance (PDR) in all stable even N=82 isotones with
the method of nuclear resonance fluorescence using real photons in the entrance
channel. In all cases, a fragmented resonance-like structure of E1 strength is
observed in the energy region 5 MeV to 8 MeV. An analysis of the fragmentation
of the strength reveals that the degree of fragmentation decreases towards the
proton-deficient isotones while the total integrated strength increases
indicating a dependence of the total strength on the neutron-to-proton ratio.
The experimental results are compared to microscopic calculations within the
quasi-particle phonon model (QPM). The calculation includes complex
configurations of up to three phonons and is able to reproduce also the
fragmentation of the E1 strength which allows to draw conclusions on the
damping of the PDR. Calculations and experimental data are in good agreement in
the degree of fragmentation and also in the integrated strength if the
sensitivity limit of the experiments is taken into account
Resistive Plate Chambers for Precise Measurement of High-Momentum Protons in Short Range Correlations at RB
The Reactions with Relativistic Radioactive Beams (RB) collaboration of
the Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, has
constructed an experimental setup to perform fundamental studies of nuclear
matter, using as a probe reactions with exotic nuclei at relativistic energies.
Among the various detection systems, one of the most recent upgrades consisted
on the installation of a large area, around 2 m, multi-gap Resistive Plate
Chamber (RPC), equipped with twelve 0.3 mm gaps and readout by 30 mm pitch
strips, exhibiting a timing precision down to 50 ps and efficiencies above 98%
for MIPs in a previous characterization of the detector. The RPC was part of
the setup of the FAIR Phase 0 experiment that focused on measuring, for the
first time, nucleon-nucleon short-range correlations (SRC) inside an exotic
nucleus (C) that occurred in Spring 2022. The excellent timing precision
of this detector will allow the measurement of the forward emitted proton
momentum with a resolution of around 1%. In beam measurements show an RPC
efficiency above 95% and a time precision better than 100 ps (including the
contribution of a reference scintillator and the momentum spread of the
particles) for forward emitted particles
Integration of maXs-type microcalorimeter detectors for high-resolution x-ray spectroscopy into the experimental environment at the CRYRING@ESR electron cooler
We report on the first integration of novel magnetic microcalorimeter detectors (MMCs), developed within SPARC (Stored Particles Atomic Physics Research Collaboration), into the experimental environment of storage rings at GSI, Darmstadt, namely at the electron cooler of CRYRING@ESR. Two of these detector systems were positioned at the 0â and 180â view ports of the cooler section to obtain high-resolution x-ray spectra originating from a stored beam of hydrogen-like uranium interacting with the cooler electrons. While previous test measurements with microcalorimeters at the accelerator facility of GSI were conducted in the mode of well-established stand-alone operation, for the present experiment we implemented several notable modifications to exploit the full potential of this type of detector for precision x-ray spectroscopy of stored heavy ions. Among these are a new readout system compatible with the multi branch system data acquisition platform of GSI, the synchronization of a quasi-continuous energy calibration with the operation cycle of the accelerator facility, as well as the first exploitation of the maXs detectors\u27 time resolution to apply coincidence conditions for the detection of photons and charge-changed ions
Integration of maXs-type microcalorimeter detectors for high-resolution x-ray spectroscopy into the experimental environment at the CRYRING@ESR electron cooler
We report on the first integration of novel magnetic microcalorimeter detectors (MMCs), developed within SPARC (Stored Particles Atomic Physics Research Collaboration), into the experimental environment of storage rings at GSI, Darmstadt, namely at the electron cooler of CRYRING@ESR. Two of these detector systems were positioned at the 0° and 180° view ports of the cooler section to obtain high-resolution x-ray spectra originating from a stored beam of hydrogen-like uranium interacting with the cooler electrons. While previous test measurements with microcalorimeters at the accelerator facility of GSI were conducted in the mode of well-established stand-alone operation, for the present experiment we implemented several notable modifications to exploit the full potential of this type of detector for precision x-ray spectroscopy of stored heavy ions. Among these are a new readout system compatible with the multi branch system data acquisition platform of GSI, the synchronization of a quasi-continuous energy calibration with the operation cycle of the accelerator facility, as well as the first exploitation of the maXs detectors\u27 time resolution to apply coincidence conditions for the detection of photons and charge-changed ions
Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,Îł) in the ESR Storage Ring
© 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio
Dipole Strength Distributions from HIGS Experiments
A series of photon scattering experiments has been performed on the double-beta decay partners 76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and the Axel-Brink hypothesi
- âŠ