52 research outputs found
Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications
AbstractAffibody molecules are a class of engineered affinity proteins with proven potential for therapeutic, diagnostic and biotechnological applications. Affibody molecules are small (6.5kDa) single domain proteins that can be isolated for high affinity and specificity to any given protein target. Fifteen years after its discovery, the Affibody technology is gaining use in many groups as a tool for creating molecular specificity wherever a small, engineering compatible tool is warranted. Here we summarize recent results using this technology, propose an Affibody nomenclature and give an overview of different HER2-specific Affibody molecules. Cumulative evidence suggests that the three helical scaffold domain used as basis for these molecules is highly suited to create a molecular affinity handle for vastly different applications
Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations.
A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA
Engineering Bispecificity into a Single Albumin-Binding Domain
Bispecific antibodies as well as non-immunoglobulin based bispecific affinity proteins are considered to have a very high potential in future biotherapeutic applications. In this study, we report on a novel approach for generation of extremely small bispecific proteins comprised of only a single structural domain. Binding to tumor necrosis factor-α (TNF-α) was engineered into an albumin-binding domain while still retaining the original affinity for albumin, resulting in a bispecific protein composed of merely 46 amino acids. By diversification of the non albumin-binding side of the three-helix bundle domain, followed by display of the resulting library on phage particles, bispecific single-domain proteins were isolated using selections with TNF-α as target. Moreover, based on the obtained sequences from the phage selection, a second-generation library was designed in order to further increase the affinity of the bispecific candidates. Staphylococcal surface display was employed for the affinity maturation, enabling efficient isolation of improved binders as well as multiparameter-based sortings with both TNF-α and albumin as targets in the same selection cycle. Isolated variants were sequenced and the binding to albumin and TNF-α was analyzed. This analysis revealed an affinity for TNF-α below 5 nM for the strongest binders. From the multiparameter sorting that simultaneously targeted TNF-α and albumin, several bispecific candidates were isolated with high affinity to both antigens, suggesting that cell display in combination with fluorescence activated cell sorting is a suitable technology for engineering of bispecificity. To our knowledge, the new binders represent the smallest engineered bispecific proteins reported so far. Possibilities and challenges as well as potential future applications of this novel strategy are discussed
Cell Wall Antibiotics Provoke Accumulation of Anchored mCherry in the Cross Wall of Staphylococcus aureus
A fluorescence microscopy method to directly follow the localization of defined proteins in Staphylococcus was hampered by the unstable fluorescence of fluorescent proteins. Here, we constructed plasmid (pCX) encoded red fluorescence (RF) mCherry (mCh) hybrids, namely mCh-cyto (no signal peptide and no sorting sequence), mCh-sec (with signal peptide), and mCh-cw (with signal peptide and cell wall sorting sequence). The S. aureus clones targeted mCh-fusion proteins into the cytosol, the supernatant and the cell envelope respectively; in all cases mCherry exhibited bright fluorescence. In staphylococci two types of signal peptides (SP) can be distinguished: the +YSIRK motif SPlip and the −YSIRK motif SPsasF. mCh-hybrids supplied with the +YSIRK motif SPlip were always expressed higher than those with −YSIRK motif SPsasF. To study the location of the anchoring process and also the influence of SP type, mCh-cw was supplied on the one hand with +YSIRK motif (mCh-cw1) and the other hand with -YSIRK motif (mCh-cw2). MCh-cw1 preferentially localized at the cross wall, while mCh-cw2 preferentially localized at the peripheral wall. Interestingly, when treated with sub-lethal concentrations of penicillin or moenomycin, both mCh-cw1 and mCh-cw2 were concentrated at the cross wall. The shift from the peripheral wall to the cross wall required Sortase A (SrtA), as in the srtA mutant this effect was blunted. The effect is most likely due to antibiotic mediated increase of free anchoring sites (Lipid II) at the cross wall, the substrate of SrtA, leading to a preferential incorporation of anchored proteins at the cross wall
Dissecting the structural organization of multiprotein amyloid aggregates using a bottom-up approach.
Deposition of fibrillar amyloid β (Aβ) in senile plaques is a pathological signature of Alzheimer's disease. However, senile plaques also contain many other components, including a range of different proteins. Although the composition of the plaques can be analyzed in post mortem tissue, knowledge of the molecular details of these multiprotein inclusions and their assembly processes is limited, which impedes the progress in deciphering the biochemical mechanisms associated with Aβ pathology. We here describe a bottom-up approach to monitor how proteins from human cerebrospinal fluid associate with Aβ amyloid fibrils to form plaque particles. The method combines flow cytometry and mass spectrometry proteomics and allowed us to identify and quantify 128 components of the captured multiprotein aggregates. The results provide insights in the functional characteristics of the sequestered proteins and reveal distinct interactome responses for the two investigated Aβ variants, Aβ(1-40) and Aβ(1-42). Furthermore, the quantitative data is used to build models of the structural organization of the multiprotein aggregates, which suggests that Aβ is not the primary binding target for all the proteins; secondary interactions account for the majority of the assembled components. The study elucidates how different proteins are recruited into senile plaques and establishes a new model system for exploring the pathological mechanisms of Alzheimer's disease from a molecular perspective
Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts
Carbonic anhydrase IX (CAIX) is a cancer-associated molecular target for several classes of therapeutics. CAIX is overexpressed in a large fraction of renal cell carcinomas (RCC). Radionuclide molecular imaging of CAIX-expression might offer a non-invasive methodology for stratification of patients with disseminated RCC for CAIX-targeting therapeutics. Radiolabeled monoclonal antibodies and their fragments are actively investigated for imaging of CAIX expression. Promising alternatives are small non-immunoglobulin scaffold proteins, such as affibody molecules. A CAIX-targeting affibody ZCAIX:2 was re-designed with the aim to decrease off-target interactions and increase imaging contrast. The new tracer, DOTA-HE3-ZCAIX:2, was labeled with In-111 and characterized in vitro. Tumor-targeting properties of [In-111]In-DOTA-HE3-ZCAIX:2 were compared head-to-head with properties of the parental variant, [(99)mTc]Tc(CO)(3)-HE3-ZCAIX:2, and the most promising antibody fragment-based tracer, [In-111]In-DTPA-G250(Fab')(2), in the same batch of nude mice bearing CAIX-expressing RCC xenografts. Compared to the (99)mTc-labeled parental variant, [In-111]In-DOTA-HE3-ZCAIX:2 provides significantly higher tumor-to-lung, tumor-to-bone and tumor-to-liver ratios, which is essential for imaging of CAIX expression in the major metastatic sites of RCC. [In-111]In-DOTA-HE3-ZCAIX:2 offers significantly higher tumor-to-organ ratios compared with [In-111]In-G250(Fab']2. In conclusion, [In-111]In-DOTA-HE3-ZCAIX:2 can be considered as a highly promising tracer for imaging of CAIX expression in RCC metastases based on our results and literature data
- …