75 research outputs found

    On the number of young stellar discs in the Galactic Centre

    Full text link
    Observations of the Galactic Centre show evidence of disc-like structures of very young stars orbiting the central super-massive black hole within a distance of a few 0.1 pc. While it is widely accepted that about half of the stars form a relatively flat disc rotating clockwise on the sky, there is a substantial ongoing debate on whether there is a second, counter-clockwise disc of stars. By means of N-body simulations using our bhint code, we show that two highly inclined stellar discs with the observed properties cannot be recognised as two flat circular discs after 5 Myr of mutual interaction. Instead, our calculations predict a significant warping of the two discs, which we show to be apparent among the structures observed in the Galactic Centre. While the high eccentricities of the observed counter-clockwise orbits suggest an eccentric origin of this system, we show the eccentricity distribution in the inner part of the more massive clockwise disc to be perfectly consistent with an initially circular disc in which stellar eccentricities increase due to both non-resonant and resonant relaxation. We conclude that the relevant question to ask is therefore not whether there are two discs of young stars, but whether there were two such discs to begin with.Comment: 6 pages, 7 figures, accepted for publication in MNRAS Letter

    Constraining the initial mass function of stars in the Galactic Centre

    Full text link
    (abridged) Here we discuss the question whether the extreme circumstances in the centre of the Milky Way may be the reason for a significant variation of the IMF. By means of stellar evolution models using different codes we show that the observed luminosity in the central parsec is too high to be explained by a long-standing top-heavy IMF, considering the limited amount of mass inferred from stellar kinematics in this region. In contrast, continuous star formation over the Galaxy's lifetime following a canonical IMF results in a mass-to-light ratio and a total mass of stellar black holes (SBHs) consistent with the observations. Furthermore, these SBHs migrate towards the centre due to dynamical friction, turning the cusp of visible stars into a core as observed in the Galactic Centre. For the first time here we explain the luminosity and dynamical mass of the central cluster and both the presence and extent of the observed core, since the number of SBHs expected from a canonical IMF is just enough to make up for the missing luminous mass. We conclude that the Galactic Centre is consistent with the canonical IMF and do not suggest a systematic variation as a result of the region's properties such as high density, metallicity, strong tidal field etc.Comment: MNRAS, accepted, 8 pages, 4 figure

    Influence of a stellar cusp on the dynamics of young stellar discs and the origin of the S-stars in the Galactic Centre

    Full text link
    Observations of the Galactic Centre show evidence of one or two disc-like structures of very young stars orbiting the central super-massive black hole within a distance of a few 0.1 pc. A number of analyses have been carried out to investigate the dynamical behaviour and consequences of these discs, including disc thickness and eccentricity growth as well as mutual interaction and warping. However, most of these studies have neglected the influence of the stellar cusp surrounding the black hole, which is believed to be 1-2 orders of magnitude more massive than the disc(s). By means of N-body integrations using our bhint code, we study the impact of stellar cusps of different compositions. We find that although the presence of a cusp does have an important effect on the evolution of an otherwise isolated flat disc, its influence on the evolution of disc thickness and warping is rather mild in a two-disc configuration. However, we show that the creation of highly eccentric orbits strongly depends on the graininess of the cusp (i.e. the mean and maximum stellar masses): While Chang (2009) recently found that full cycles of Kozai resonance are prevented by the presence of an analytic cusp, we show that relaxation processes play an important role in such highly dense regions and support short-term resonances. We thus find that young disc stars on initially circular orbits can achieve high eccentricities by resonant effects also in the presence of a cusp of stellar remnants, yielding a mechanism to create S-stars and hyper-velocity stars. Furthermore, we discuss the underlying initial mass function (IMF) of the young stellar discs and find no definite evidence for a non-canonical IMF.Comment: 10 pages, 7 figures, 1 table, accepted for publication in MNRA

    The origin of S-stars and a young stellar disk: distribution of debris stars of a sinking star cluster

    Full text link
    Within the distance of 1 pc from the Galactic center (GC), more than 100 young massive stars have been found. The massive stars at 0.1-1 pc from the GC are located in one or two disks, while those within 0.1 pc from the GC, S-stars, have an isotropic distribution. How these stars are formed is not well understood, especially for S-stars. Here we propose that a young star cluster with an intermediate-mass black hole (IMBH) can form both the disks and S-stars. We performed a fully self-consistent NN-body simulation of a star cluster near the GC. Stars escaped from the tidally disrupted star cluster were carried to the GC due to an 1:1 mean motion resonance with the IMBH formed in the cluster. In the final phase of the evolution, the eccentricity of the IMBH becomes very high. In this phase, stars carried by the 1:1 resonance with the IMBH were dropped from the resonance and their orbits are randomized by a chaotic Kozai mechanism. The mass function of these carried stars is extremely top-heavy within 10". The surface density distributions of young massive stars has a slope of -1.5 within 10" from the GC. The distribution of stars in the most central region is isotropic. These characteristics agree well with those of stars observed within 10" from the GC.Comment: 10 pages, 5 figures, accepted for ApJ

    Resonant relaxation and the warp of the stellar disc in the Galactic centre

    Full text link
    Observations of the spatial distribution and kinematics of young stars in the Galactic centre can be interpreted as showing that the stars occupy one, or possibly two, discs of radii ~0.05-0.5 pc. The most prominent (`clockwise') disc exhibits a strong warp: the normals to the mean orbital planes in the inner and outer third of the disc differ by ~60 deg. Using an analytical model based on Laplace-Lagrange theory, we show that such warps arise naturally and inevitably through vector resonant relaxation between the disc and the surrounding old stellar cluster.Comment: 24 pages, 8 figures, accepted by MNRA

    Secular Dynamical Anti-Friction in Galactic Nuclei

    Full text link
    We identify a gravitational-dynamical process in near-Keplerian potentials of galactic nuclei that occurs when an intermediate-mass black hole (IMBH) is migrating on an eccentric orbit through the stellar cluster towards the central supermassive black hole (SMBH). We find that, apart from conventional dynamical friction, the IMBH experiences an often much stronger systematic torque due to the secular (i.e., orbit-averaged) interactions with the cluster's stars. The force which results in this torque is applied, counterintuitively, in the same direction as the IMBH's precession and we refer to its action as "secular-dynamical anti-friction" (SDAF). We argue that SDAF, and not the gravitational ejection of stars, is responsible for the IMBH's eccentricity increase seen in the initial stages of previous N-body simulations. Our numerical experiments, supported by qualitative arguments, demonstrate that (1) when the IMBH's precession direction is artificially reversed, the torque changes sign as well, which decreases the orbital eccentricity, (2) the rate of eccentricity growth is sensitive to the IMBH migration rate, with zero systematic eccentricity growth for an IMBH whose orbit is artificially prevented from inward migration, and (3) SDAF is the strongest when the central star cluster is rapidly rotating. This leads to eccentricity growth/decrease for the clusters rotating in the opposite/same direction relative to the IMBH's orbital motion.Comment: 8 pages, 7 figures, Published in Ap

    The coupling of a young stellar disc with the molecular torus in the Galactic centre

    Full text link
    The Galactic centre hosts, according to observations, a number of early-type stars. About one half of those which are orbiting the central supermassive black hole on orbits with projected radii \gtrsim 0.03 pc form a coherently rotating disc. Observations further reveal a massive gaseous torus and a significant population of late-type stars. In this paper, we investigate, by means of numerical N-body computations, the orbital evolution of the stellar disc, which we consider to be initially thin. We include the gravitational influence of both the torus and the late-type stars, as well as the self-gravity of the disc. Our results show that, for a significant set of system parameters, the evolution of the disc leads, within the lifetime of the early-type stars, to a configuration compatible with the observations. In particular, the disc naturally reaches a specific - perpendicular - orientation with respect to the torus, which is indeed the configuration observed in the Galactic centre. We, therefore, suggest that all the early-type stars may have been born within a single gaseous disc.Comment: Accepted for publication in MNRAS; 9 pages, 4 figures, 1 tabl

    Dynamical evolution of the young stars in the Galactic center: N-body simulations of the S-stars

    Full text link
    We use N-body simulations to study the evolution of the orbital eccentricities of stars deposited near (<0.05 pc) the Milky Way massive black hole (MBH), starting from initial conditions motivated by two competing models for their origin: formation in a disk followed by inward migration; and exchange interactions involving a binary star. The first model predicts modest eccentricities, lower than those observed in the S-star cluster, while the second model predicts higher eccentricities than observed. The N-body simulations include a dense cluster of 10 M_sun stellar black holes (SBHs), expected to accumulate near the MBH by mass segregation. Perturbations from the SBHs tend to randomize the stellar orbits, partially erasing the dynamical signatures of their origin. The eccentricities of the initially highly eccentric stars evolve, in 20 Myr (the S-star lifespan), to a distribution that is consistent at the ~95 % level with the observed eccentricity distribution. In contrast, the eccentricities of the initially more circular orbits fail to evolve to the observed values in 20 Myr, arguing against the disk migration scenario. We find that 20 % - 30 % of the S-stars are tidally disrupted by the MBH over their lifetimes, and that the S-stars are not likely to be ejected as hypervelocity stars outside the central 0.05 pc by close encounters with stellar black holes.Comment: 6 pages, 2 figures. Minor corrections, Sumitted to Ap

    The Anisotropic Spatial Distribution of Hypervelocity Stars

    Full text link
    We study the distribution of angular positions and angular separations of unbound hypervelocity stars (HVSs). HVSs are spatially anisotropic at the 3-sigma level. The spatial anisotropy is significant in Galactic longitude, not in latitude, and the inclusion of lower velocity, possibly bound HVSs reduces the significance of the anisotropy. We discuss how the observed distribution of HVSs may be linked to their origin. In the future, measuring the distribution of HVSs in the southern sky will provide additional constraints on the spatial anisotropy and the origin of HVSs.Comment: 4 pages, accepted to ApJ Letter

    The Effectiveness of the Kozai Mechanism in the Galactic Centre

    Full text link
    I examine the effectiveness of Kozai oscillations in the centres of galaxies and in particular the Galactic centre using standard techniques from celestial mechanics. In particular, I study the effects of a stellar bulge potential and general relativity on Kozai oscillations, which are induced by stellar discs. Lockmann et al (2008) recently suggested that Kozai oscillations induced by the two young massive stellar discs in the Galactic centre drives the orbits of the young stars to large eccentricity (e1e\approx 1). If some of these young eccentric stars are in binaries, they would be disrupted near pericentre, leaving one star in a tight orbit around the central SMBH and producing the S-star population. I find that the {\it spherical} stellar bulge suppresses Kozai oscillations, when its enclosed mass inside of a test body is of order the mass in the stellar disc(s). Since the stellar bulge in the Galactic centre is much larger than the stellar discs, Kozai oscillations {\it due to the stellar discs} are likely suppressed. Whether Kozai oscillations are induced from other nonspherical components to the potential (for instance, a flattened stellar bulge) is yet to be determined.Comment: 6 pages, 3 figures, accepted to MNRA
    corecore