182 research outputs found

    New microRNA biomarkers for drug-induced steatosis and their potential to predict the contribution of drugs to non-alcoholic fatty liver disease

    Get PDF
    Background and Aims: Drug-induced steatosis is a major reason for drug failure in clinical trials and post-marketing withdrawal; and therefore, predictive biomarkers are essential. These could be particularly relevant in non-alcoholic fatty liver disease (NAFLD), where most patients show features of the metabolic syndrome and are prescribed with combined chronic therapies, which can contribute to fatty liver. However, specific biomarkers to assess the contribution of drugs to NAFLD are lacking. We aimed to find microRNAs (miRNAs) responsive to steatotic drugs and to investigate if they could become circulating biomarkers for drug-induced steatosis. Methods: Human HepG2 cells were treated with drugs and changes in miRNA levels were measured by microarray and qRT-PCR. Drug-induced fat accumulation in HepG2 was analyzed by high-content screening and enzymatic methods. miRNA biomarkers were also analyzed in the sera of 44 biopsy-proven NAFLD patients and in 10 controls. Results: We found a set of 10 miRNAs [miR-22-5p, -3929, -24-2-5p, -663a, -29a-3p, -21 (5p and 3p), -27a-5p, -1260 and -202-3p] that were induced in human HepG2 cells and secreted to the culture medium upon incubation with model steatotic drugs (valproate, doxycycline, cyclosporin A and tamoxifen). Moreover, cell exposure to 17 common drugs for NAFLD patients showed that some of them (e.g., irbesartan, fenofibrate, and omeprazole) also induced these miRNAs and increased intracellular triglycerides, particularly in combinations. Finally, we found that most of these miRNAs (60%) were detected in human serum, and that NAFLD patients under fibrates showed both induction of these miRNAs and a more severe steatosis grade. Conclusion: Steatotic drugs induce a common set of hepatic miRNAs that could be used in drug screening during preclinical development. Moreover, most of these miRNAs are serum circulating biomarkers that could become useful in the diagnosis of iatrogenic steatosis

    Validación del método para la determinación de proteína en alimentos bajo la Norma NMX-F-608-NORMEX-2011.

    Get PDF
    La validación de métodos analíticos en los laboratorios de análisis es una práctica frecuente y es un requisito obligatorio si el laboratorio se encuentra acreditado bajo la norma NMX-EC-17025-IMNC-2006 ante organismos acreditadores de laboratorios de prueba o ensayo tales como la Entidad Mexicana de Acreditación (EMA). El propósito de este trabajo fue llevar a cabo la validación o comprobación del método analítico para la determinación de proteínas en alimentos y bebidas no alcohólicas de la Norma Mexicana NMX-F-608-NORMEX-2011 vigente actualmente. El proceso de validación se realizó en un laboratorio acreditado ante el organismo acreditador ya mencionado con la finalidad de verificar que el método cumple con los parámetros evaluados y demostrar que el laboratorio es competente para llevar a cabo dicho método en sus instalaciones realizado por su personal técnico. Los parámetros evaluados fueron el recobro, límite de cuantificación, el intervalo de trabajo, la repetibilidad, reproducibilidad y el sesgo además de la incertidumbre expandida. Los resultados para los parámetros evaluados fueron satisfactorios por lo que el laboratorio puede ofrecer a sus clientes el análisis de proteína según este método bajo las condiciones establecidas gracias a la validación del método

    Cellular Concrete Bricks with Recycled Expanded Polystyrene Aggregate

    Get PDF
    Cellular concrete bricks were obtained by using a lightweight mortar with recycled expanded polystyrene aggregate instead of sandy materials. After determining the block properties (absorption, compressive strength, and tensile stresses), it was found that this brick meets the requirements of the masonry standards used in Mexico. The obtained material is lighter than the commercial ones, which facilitates their rapid elaboration, quality control, and transportation. It is less permeable, which helps prevent moisture formation retaining its strength due to the greater adherence shown with dry polystyrene. It was more flexible, which makes it less vulnerable to cracking walls due to soil displacements. Furthermore, it is economical, because it uses recyclable material and has properties that prevent deterioration increasing its useful life. We recommend the use of the fully dry EP under a dry environment to obtain the best properties of brick

    Effect of scrapie prion infection in ovine bone marrow-derived mesenchymal stem cells and ovine mesenchymal stem cell-derived neurons

    Get PDF
    Scrapie is a prion disease affecting sheep and goats and it is considered a prototype of transmissible spongiform encephalopathies (TSEs). Mesenchymal stem cells (MSCs) have been proposed as candidates for developing in vitro models of prion diseases. Murine MSCs are able to propagate prions after previous mouse-adaptation of prion strains and, although ovine MSCs express the cellular prion protein (PrPC), their susceptibility to prion infection has never been investigated. Here, we analyze the potential of ovine bone marrow-derived MSCs (oBM-MSCs), in growth and neurogenic conditions, to be infected by natural scrapie and propagate prion particles (PrPSc) in vitro, as well as the effect of this infection on cell viability and proliferation. Cultures were kept for 48–72 h in contact with homogenates of central nervous system (CNS) samples from scrapie or control sheep. In growth conditions, oBM-MSCs initially maintained detectable levels of PrPSc post-inoculation, as determined by Western blotting and ELISA. However, the PrPSc signal weakened and was lost over time. oBM-MSCs infected with scrapie displayed lower cell doubling and higher doubling times than those infected with control inocula. On the other hand, in neurogenic conditions, oBM-MSCs not only maintained detectable levels of PrPSc post-inoculation, as determined by ELISA, but this PrPSc signal also increased progressively over time. Finally, inoculation with CNS extracts seems to induce the proliferation of oBM-MSCs in both growth and neurogenic conditions. Our results suggest that oBM-MSCs respond to prion infection by decreasing their proliferation capacity and thus might not be permissive to prion replication, whereas ovine MSC-derived neuron-like cells seem to maintain and replicate PrPSc

    Characterization of mesenchymal stem cells in sheep naturally infected with scrapie

    Get PDF
    Mesenchymal stem cells (MSCs) can be infected with prions and have been proposed as in vitro cell-based models for prion replication. In addition, autologous MSCs are of interest for cell therapy in neurodegenerative diseases. To the best of our knowledge, the effect of prion diseases on the characteristics of these cells has never been investigated. Here, we analysed the properties of MSCs obtained from bone marrow (BM-MSCs) and peripheral blood (PB-MSCs) of sheep naturally infected with scrapie — a large mammal model for the study of prion diseases. After three passages of expansion, MSCs derived from scrapie animals displayed similar adipogenic, chondrogenic and osteogenic differentiation ability as cells from healthy controls, although a subtle decrease in the proliferation potential was observed. Exceptionally, mesenchymal markers such as CD29 were significantly upregulated at the transcript level compared with controls. Scrapie MSCs were able to transdifferentiate into neuron-like cells, but displayed lower levels of neurogenic markers at basal conditions, which could limit this potential. The expression levels of cellular prion protein (PrPC) were highly variable between cultures, and no significant differences were observed between control and scrapie-derived MSCs. However, during neurogenic differentiation the expression of PrPC was upregulated in MSCs. This characteristic could be useful for developing in vitro models for prion replication. Despite the infectivity reported for MSCs obtained from scrapie-infected mice and Creutzfeldt–Jakob disease patients, protein misfolding cyclic amplification did not detect PrPSc in BM- or PB-MSCs from scrapie-infected sheep, which limits their use for in vivo diagnosis for scrapie

    MicroRNA Alterations in a Tg501 Mouse Model of Prion Disease

    Get PDF
    MicroRNAs (miRNAs) may contribute to the development and pathology of many neurodegenerative diseases, including prion diseases. They are also promising biomarker candidates due to their stability in body fluids. We investigated miRNA alterations in a Tg501 mouse model of prion diseases that expresses a transgene encoding the goat prion protein (PRNP). Tg501 mice intracranially inoculated with mouse-adapted goat scrapie were compared with age-matched, mock inoculated controls in preclinical and clinical stages. Small RNA sequencing from the cervical spinal cord indicated that miR-223-3p, miR-151-3p, and miR-144-5p were dysregulated in scrapie-inoculated animals before the onset of symptoms. In clinical-stage animals, 23 significant miRNA alterations were found. These miRNAs were predicted to modify the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including prion disease, extracellular matrix interactions, glutaminergic synapse, axon guidance, and transforming growth factor-beta signaling. MicroRNAs miR-146a-5p (up in cervical spinal cord) and miR-342-3p (down in cervical spinal cord, cerebellum and plasma), both indicated in neurodegenerative diseases earlier, were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Minimal changes observed before the disease onset suggests that most miRNA alterations observed here are driven by advanced prion-associated pathology, possibly limiting their use as diagnostic markers. However, the results encourage further mechanistic studies on miRNA-regulated pathways involved in these neurodegenerative conditions

    BAMBI and CHGA in Prion Diseases: Neuropathological Assessment and Potential Role as Disease Biomarkers

    Get PDF
    Prion diseases affect both animals and humans. Research in the natural animal model of the disease could help in the understanding of neuropathological mechanisms and in the development of biomarkers for human pathologies. For this purpose, we studied the expression of 10 genes involved in prion propagation in vitro in the central nervous system of scrapie-infected sheep. Dysregulated genes (BAMBI and CHGA) were further analysed in a transgenic murine model (Tg338) of scrapie, and their protein distribution was determined using immunohistochemistry and Western blot. Their potential as biomarkers was finally assessed using enzyme-linked immunosorbent assay (ELISA) in cerebrospinal fluid (CSF) of scrapie sheep and Creutzfeldt-Jakob disease (CJD) patients. Protein BAMBI was upregulated in highly affected brain areas and CHGA was overexpressed along the brain in both models. Moreover, BAMBI and CHGA immunostaining scores strongly correlated with spongiosis and microgliosis in mice. Finally, levels of BAMBI were significantly higher in the CSF of clinical sheep and CJD patients. In addition to their potential as biomarkers, our work confirms the role of BAMBI and CHGA in prion neuropathology in vivo, but besides prion replication, they seem to be involved in the characteristic neuroinflammatory response associated to prion infection
    corecore