397 research outputs found

    Steady-state signatures of radiation trapping by cold multilevel atoms

    Full text link
    In this paper, we use steady-state measurements to obtain evidence of radiation trapping in an optically thick a cloud of cold rubidium atoms. We investigate the fluorescence properties of our sample, pumped on opened transitions. The intensity of fluorescence exhibits a non trivial dependence on the optical thickness of the media. A simplified model, based on rate equations self-consistently coupled to a diffusive model of light transport, is used to explain the experimental observations in terms of incoherent radiation trapping on one spectral line. Measurements of atomic populations and fluorescence spectrum qualitatively agree with this interpretation.Comment: 8 pages, 5 figure

    Detection of Fe I and Fe II in the atmosphere of MASCARA-2b using a cross-correlation method

    Get PDF
    Ultra-hot Jupiters are gas giants planets whose dayside temperature, due to the strong irradiation received from the host star, is greater than 2200 K. These kind of objects are perfect laboratories to study chemistry of exoplanetary upper atmospheres via transmission spectroscopy. Exo-atmospheric absorption features are buried in the noise of the in-transit residual spectra. However we can retrieve the information of hundreds of atmospheric absorption lines by performing a cross-correlation with an atmospheric transmission model, which allows us to greatly increase the exo-atmospheric signal. At the high-spectral resolution of our data, the Rossiter-McLaughlin effect and centre-to-limb variation have a strong contribution. Here, we present the first detection of Fe I and the confirmation of absorption features of Fe II in the atmosphere of the ultra-hot Jupiter MASCARA-2b/KELT-20b, by using three transit observations with HARPS-N. After combining all transit observations we find a high cross-correlation signal of Fe I and Fe II with signal-to-noise ratios of 10.5 +/- 0.4 and 8.6 +/- 0.5, respectively. The peak absorption for both species appear to be blue-shifted with velocities of -6.3 +/- 0.8 km/s for Fe I and -2.8 +/- 0.8 km/s for Fe II, suggesting the presence of winds from the day- to night-side of the planet's atmosphere. These results confirm previous studies of this planet and add a new atomic species (Fe I) to the long list of detected species in the atmosphere of MASCARA-2b, making it, together with KELT-9b, the most feature-rich ultra-hot Jupiter to date.Comment: 10 pages, 7 figure

    Retrieval of nitric oxide in the mesosphere and lower thermosphere from SCIAMACHY limb spectra

    Get PDF
    We use the ultra-violet (UV) spectra in the range 230-300 nm from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) to retrieve the nitric oxide (NO) number densities from atmospheric emissions in the gamma-bands in the mesosphere and lower thermosphere. Using 3-D ray tracing, a 2-D retrieval grid, and regularisation with respect to altitude and latitude, we retrieve a whole semi-orbit simultaneously for the altitude range from 60 to 160 km. We present details of the retrieval algorithm, first results, and initial comparisons to data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Our results agree on average well with MIPAS data and are in line with previously published measurements from other instruments. For the time of available measurements in 2008-2011, we achieve a vertical resolution of 5-10 km in the altitude range 70-140 km and a horizontal resolution of about 9 from 60 S-60 N. With this we have independent measurements of the NO densities in the mesosphere and lower thermosphere with approximately global coverage. This data can be further used to validate climate models or as input for them. © 2013 Author(s).S. Bender and M. Sinnhuber thank the Helmholtz-society for funding this project under the grant number VH-NG-624. The IAA team (M. Lopez-Puertas and B. Funke) was supported by the Spanish MINECO under grant AYA2011-23552 and EC FEDER funds. The SCIAMACHY project was funded by German Aerospace (DLR), the Dutch Space Agency, SNO, and the Belgium ministry. ESA funded the Envisat project. The University of Bremen as Principal Investigator has led the scientific support and development of SCIAMACHY and the scientific exploitation of its data products. We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology.Peer Reviewe

    The CH4_4 abundance in Jupiter's upper atmosphere

    Get PDF
    Hydrocarbon species, and in particular CH4_4, play a key role in the stratosphere--thermosphere boundary of Jupiter, which occurs around the μ\mu-bar pressure level. Previous analyses of solar occultation, He and Ly-α\alpha airglow, and ISO/SWS measurements of the radiance around 3.3 μ\mum have inferred significantly different methane concentrations. Here we aim to accurately model the CH4_4 radiance at 3.3 μ\mum measured by ISO/SWS by using a comprehensive non-local thermodynamic equilibrium model and the most recent collisional rates measured in the laboratory for CH4_4 to shed new light onto the methane concentration in the upper atmosphere of Jupiter. These emission bands have been shown to present a peak contribution precisely at the μ\mu-bar level, hence directly probing the region of interest. We find that a high CH4_4 concentration is necessary to explain the data, in contrast with the most recent analyses, and that the observations favour the lower limit of the latest laboratory measurements of the CH4_4 collisional relaxation rates. Our results provide precise constraints on the composition and dynamics of the lower atmosphere of Jupiter.Comment: 15 pages; accepted for publication in A&

    Variability of NOx in the polar middle atmosphere from October 2003 to March 2004: Vertical transport vs. local production by energetic particles

    Get PDF
    We use NO, NO2 and CO from MIPAS/ENVISAT to investigate the impact of energetic particle precipitation onto the NOx budget from the stratosphere to the lower mesosphere in the period from October 2003 to March 2004, a time of high solar and geomagnetic activity. We find that in the winter hemisphere the indirect effect of auroral electron precipitation due to downwelling of upper mesospheric/lower thermospheric air into the stratosphere prevails. Its effect exceeds even the direct impact of the very large solar proton event in October/November 2003 by nearly 1 order of magnitude. Correlations of NOx and CO show that the unprecedented high NOx values observed in the Northern Hemisphere lower mesosphere and upper stratosphere in late January and early February are fully consistent with transport from the upper mesosphere/lower thermosphere and subsequent mixing at lower altitudes. In the polar summer Southern Hemisphere, we observed an enhanced variability of NO and NO2 on days with enhanced geomagnetic activity, but this seems to indicate enhanced instrument noise rather than a direct increase due to electron precipitation. A direct effect of electron precipitation onto NOx can not be ruled out, but, if any, it is lower than 3 ppbv in the altitude range 40-56 km and lower than 6 ppbv in the altitude range 56-64 km. An additional significant source of NOx due to local production by precipitating electrons below 70 km exceeding several parts per billion as discussed in previous publications appears unlikely. © Author(s) 2014.M. Sinnhuber gratefully acknowledges funding by the Helmholtz Society HGF (contract VH-NG-624). The IAA team was supported by the Spanish MINECO under grant AYA2011-23552 and EC FEDER funds. We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology.Peer Reviewe

    Aerosols and Water Ice in Jupiter's Stratosphere from UV-NIR Ground-based Observations

    Get PDF
    Jupiter's atmosphere has been sounded in transmission from the UV to the IR, as if it were a transiting exoplanet, by observing Ganymede while passing through Jupiter's shadow. The spectra show strong extinction due to the presence of aerosols and haze in Jupiter's atmosphere and strong absorption features of methane. Here, we report a new detailed analysis of these observations, with special emphasis on the retrievals of the vertical distribution of the aerosols and their sizes, and the properties and distribution of the stratospheric water ice. Our analysis suggests the presence of aerosols near the equator in the altitude range of 100 hPa up to at least 0.01 hPa, with a layer of small particles (mean radius of 0.1 μm) in the upper part (above 0.1 hPa), an intermediate layer of aerosols with a radius of 0.3 μm, extending between ∼10 and 0.01 hPa, and a layer with larger sizes of ∼0.6 μm at approximately 100-1 hPa. The corresponding loads for each layer are ∼2 × 10 g cm, ∼3.4 × 10 g cm, and ∼1.5 × 10 g cm, respectively, with a total load of ∼2.0 × 10 g cm. The lower and middle layers agree well with previous measurements; but the finer particles of 0.1 μm above 0.01 hPa have not been reported before. The spectra also show two broad features near 1.5 and 2.0 μm, which we attribute to a layer of very small (∼10 nm) HO crystalline ice in Jupiter's lower stratosphere (∼0.5 hPa). While these spectral signatures seem to be unequivocally attributable to crystalline water ice, they require a large amount of water ice to explain the strong absorption features.© 2018. The American Astronomical Society. All rights reserved.We are very grateful to Rafael Escribano, Victor Herrero, Anni Maattanen, Beatriz Mate, Agustin Sanchez-Lavega, and Miguel Angel Satorre for very valuable discussions on the water ice topic. The IAA team was supported by the Spanish MICINN under projects ESP2014-54362-P, ESP2017-87143-R, and EC FEDER funds. This work is also partly financed by the Spanish Ministry of Economics and Competitiveness through grant ESP2013-48391-C4-2-R. M.G.C. is also supported by the MINECO under its >Ramon y Cajal> subprogram

    Diffusive and Arrestedlike Dynamics in Currency Exchange Markets

    Get PDF
    This work studies the symmetry between colloidal dynamics and the dynamics of the Euro–U.S. dollar currency exchange market (EURUSD). We consider the EURUSD price in the time range between 2001 and 2015, where we find significant qualitative symmetry between fluctuation distributions from this market and the ones belonging to colloidal particles in supercooled or arrested states. In particular, we find that models used for arrested physical systems are suitable for describing the EURUSD fluctuation distributions. Whereas the corresponding mean-squared price displacement (MSPD) to the EURUSD is diffusive for all years, when focusing in selected time frames within a day, we find a two-step MSPD when the New York Stock Exchange market closes, comparable to the dynamics in supercooled systems. This is corroborated by looking at the price correlation functions and non-Gaussian parameters and can be described by the theoretical model. We discuss the origin and implications of this analogy

    Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?

    Get PDF
    Except for a few reactions involving electronically excited molecular or atomic oxygen or nitrogen, atmospheric chemistry modelling usually assumes that the temperature dependence of reaction rates is characterized by Arrhenius' law involving kinetic temperatures. It is known, however, that in the upper atmosphere the vibrational temperatures may exceed the kinetic temperatures by several hundreds of Kelvins. This excess energy has an impact on the reaction rates. We have used upper atmospheric OH populations and reaction rate coefficients for OH(<i>v</i>=0...9)+O<sub>3</sub> and OH(<i>v</i>=0...9)+O to estimate the effective (i.e. population weighted) reaction rates for various atmospheric conditions. We have found that the effective rate coefficient for OH(<i>v</i>=0...9)+O<sub>3</sub> can be larger by a factor of up to 1470 than that involving OH in its vibrational ground state only. At altitudes where vibrationally excited states of OH are highly populated, the OH reaction is a minor sink of O<sub>x</sub> and O<sub>3</sub> compared to other reactions involving, e.g., atomic oxygen. Thus the impact of vibrationally excited OH on the ozone or O<sub>x</sub> sink remains small. Among quiescent atmospheres under investigation, the largest while still small (less than 0.1%) effect was found for the polar winter upper stratosphere and mesosphere. The contribution of the reaction of vibrationally excited OH with ozone to the OH sink is largest in the upper polar winter stratosphere (up to 4%), while its effect on the HO<sub>2</sub> source is larger in the lower thermosphere (up to 1.5% for polar winter and 2.5% for midlatitude night conditions). For OH(<i>v</i>=0...9)+O the effective rate coefficients are lower by up to 11% than those involving OH in its vibrational ground state. The effects on the odd oxygen sink are negative and can reach −3% (midlatitudinal nighttime lowermost thermosphere), i.e. neglecting vibrational excitation overestimates the odd oxygen sink. The OH sink is overestimated by up to 10%. After a solar proton event, when upper atmospheric OH can be enhanced by an order of magnitude, the excess relative odd oxygen sink by consideration of vibrational excitation in the reaction of OH(<i>v</i>=0...9)+O<sub>3</sub> is estimated at up to 0.2%, and the OH sink by OH(<i>v</i>=0...9)+O can be reduced by 12% in the thermosphere by vibrational excitation

    Determination of key residues for catalysis and RNA cleavage specificity: one mutation turns RNase II into a "SUPER-ENZYME"

    Get PDF
    RNase II is the prototype of a ubiquitous family of enzymes that are crucial for RNA metabolism. In Escherichia coli this protein is a single-stranded-specific 3'-exoribonuclease with a modular organization of four functional domains. In eukaryotes, the RNase II homologue Rrp44 (also known as Dis3) is the catalytic subunit of the exosome, an exoribonuclease complex essential for RNA processing and decay. In this work we have performed a functional characterization of several highly conserved residues located in the RNase II catalytic domain to address their precise role in the RNase II activity. We have constructed a number of RNase II mutants and compared their activity and RNA binding to the wild type using different single- or double-stranded substrates. The results presented in this study substantially improve the RNase II model for RNA degradation. We have identified the residues that are responsible for the discrimination of cleavage of RNA versus DNA. We also show that the Arg-500 residue present in the RNase II active site is crucial for activity but not for RNA binding. The most prominent finding presented is the extraordinary catalysis observed in the E542A mutant that turns RNase II into a "super-enzyme."The work was supported by Ministerio de Educación y Ciencia, Spain, Grant SAF2007-61926, an institutional grant from the “Fundación Ramón Areces”, and by Fundaçao para a Ciência e a Tecnologia, PortugalS
    corecore