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ABSTRACT

Jupiter’s atmosphere has been sounded in transmission from the UV to the IR, as if it were a transiting

exoplanet, by observing Ganymede while passing through Jupiter’s shadow. The spectra show strong

extinction due to the presence of aerosols and haze in Jupiter’s atmosphere and strong absorption

features of methane. Here, we report a new detailed analysis of these observations, with special
emphasis on the retrievals of the vertical distribution of the aerosols and their sizes, and the properties

and distribution of the stratospheric water ice. Our analysis suggests the presence of aerosols near the

equator in the altitude range of 100hPa up to at least 0.01hPa, with a layer of small particles (mean

radius of 0.1µm) in the upper part (above 0.1 hPa), an intermediate layer of aerosols with a radius of

0.3µm, extending between ∼10 and 0.01 hPa; and a layer with larger sizes of ∼0.6µm at approximately
100–1hPa. The corresponding loads for each layer are ∼2×10−7 g cm−2, ∼3.4×10−7 g cm−2, and

∼1.5×10−6 g cm−2, respectively, with a total load of ∼2.0×10−6 g cm−2. The lower and middle layers

agree well with previous measurements; but the finer particles of 0.1µm above 0.01hPa have not been

reported before. The spectra also show two broad features near 1.5 and 2.0 µm which we attribute to
a layer of very small (∼10 nm) H2O crystalline ice in Jupiter’s lower stratosphere (∼0.5 hPa). While

these spectral signatures seem to be unequivocally attributable to crystalline water ice, they require

a large amount of water ice to explain the strong absorption features.

Keywords: planets and satellites: atmospheres, planets and satellites: composition, planets and satel-

lites: gaseous planets

1. INTRODUCTION

The study of our solar system as a template for exo-planetary systems is a very useful and obvious first-step approach

for exploring and learning about new worlds (Christensen & Pearl 1997; Turnbull et al. 2006; Robinson et al. 2011;

Seager 2014). In particular, mimicking exoplanet transits by observing eclipses in our solar system is a useful resource

when no remote sensing platforms are available to do the measurements. Recent examples for the Earth and for Jupiter
atmospheres have been recently carried out by Palle et al. (2009) and Montañés-Rodŕıguez et al. (2015), respectively.
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Those observations, in addition of providing insights for future exoplanet characterizations, also serve for exploring

in details our planetary atmospheres themselves, as is the case of this work. Understanding aerosols in Jupiter’s

atmosphere is very important since, among other major effects, they largely influence the energy balance of the middle

atmosphere (West et al. 2004; Zhang et al. 2015). A very good review of the work carried until 2004 is given by
West et al. (2004). More recently, several works have been done on retrieving their latitudinal and vertical distributions

in the troposphere and stratosphere (see, e.g., Kedziora-Chudczer & Bailey 2011; Zhang et al. 2013, 2015). However,

the detailed composition and structure of the stratospheric haze remains uncertain, largely because of the lack of the

necessary data. Moreover, except in our previous work of Montañés-Rodŕıguez et al. (2015), the presence of water

ice in Jupiter’s stratosphere has not been reported so far. The study of the properties and amounts of water ice is
necessary for understanding Jupiter’ stratosphere.

Here we report on the limb transmission spectra of Jupiter’s atmosphere obtained by using ground-based observations

of Ganymede, which is in synchronous rotation around Jupiter, when crossing Jupiter’s shadow. During the eclipse,

the spectral features of the Jovian atmosphere are imprinted in the sunlight that, after passing through Jupiter’s
planetary limb, is reflected from Ganymede toward the Earth (see Fig. 1 in Montañés-Rodŕıguez et al. 2015). The

ratio spectrum of Ganymede before and during the eclipse removes the spectral features of the Sun, of the local telluric

atmosphere on top of the telescopes, and the spectral albedo of Ganymede. The spectra cover the range from the

UV to the near-IR and have a high spectral resolution (R=17,400 for the VIS and 11,300 for the near-IR) and high

signal-to-noise ratio. Previous results of the analysis of the spectra by Montañés-Rodŕıguez et al. (2015) include the
simulations of the CH4 absorption bands, the attribution of the 1.5 and 2.0 µm absorption features to H2O ice, as well

as the detection of the atomic transitions of Na.

Here we focus on a more detailed analysis of the VIS and near-IR spectral regions. While in the previous study

we analysed only the early umbra spectrum here we re-analysed that spectrum and also examine the penumbra and
the mid-umbra spectra. This allows us to conduct a detailed study of the haze in Jupiter’s stratosphere. Thus, the

retrievals of the vertical distribution and sizes of the aerosols are new. In addition, we have studied the effects of the

altitude distribution of the water ice layer, the ice particle size and their temperature. The revised study has also led

to a revision of the water ice content in the stratospheric water ice layer, which is about a factor of 5 larger.

In the next two sections we describe the observations and the details of the geometry, radiative transfer model
and input data required to analyze the spectra. In Sec. 4 we discuss the different components that contribute to the

transmission spectra and several sensitivity studies, and in Sec. 5 the results obtained for the distributions and sizes of

the aerosols and of the water ice. Then, we discuss the results and present the conclusions in Secs. 6 and 7, respectively.

2. OBSERVATIONS

An eclipse of Ganymede was first observed on 06/10/2012 using LIRIS (Manchado et al. 2004) at WHT in La Palma
Observatory, Spain. The experiment was later repeated by observing a second eclipse with XSHOOTER (Vernet et al.

2011) at VLT in Paranal Observatory, on 18/11/2012. This work focuses on the analysis of VLT data which, given the

larger aperture of VLT, have a larger signal to noise ratio. WHT observations, however, exhibit essentially the same

spectral features. A detailed description of the observations can be found in Montañés-Rodŕıguez et al. (2015).
One of the major advantages of these data is that the observations were taken simultaneously in a broad spectral

range, covering from 0.3 to 2.5 µm, and at a high spectral resolution, with resolving powers of R=9100, 17400 and 11300

for the UV, VIS and NIR regions, respectively. The typical observing window for this kind of eclipse is only several

minutes. Hence, spectra of Ganymede were taken continuously in stare mode along its translation through Jupiter’s

shadow. The penumbra phase started at 04:19 UT and the umbra phase at 04:40 UT. A total of 41 individual spectra,
covering the whole spectral region, where taken for Ganymede before the eclipse, 8 during the penumbra, and 3 during

the umbra. From those measurements, penumbra and umbra transmission spectra were obtained by normalizing them

(calculation of the ratio) with a few of the spectra measured just before the eclipse started. In this way, the ratio of the

spectra cancels out the telluric contribution of the atmosphere, the solar spectral features and the spectral signatures of
Ganymede. As shown by Montañés-Rodŕıguez et al. (2015) (see their Fig. 2), the airmass change (decrease) that occurs

during the eclipse did not have a significant effect on the penumbra and umbra normalized spectra at wavelengths

longer than 0.5µm, the region studied in this work.

3. OBSERVATIONAL GEOMETRY, RADIATIVE TRANSFER MODEL AND INPUT PARAMETERS

Transmission spectra of the occultation of the Sun through Jupiter’s atmosphere as observed from Ganymede have
been simulated for the observations of the eclipse in the penumbra and within the first stages of the umbra. The effect

of the strong refraction of Jupiter’s atmosphere allows for the limb sounding of different altitudes of its atmosphere as
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the Sun sets from Ganymede. Thus, the penumbra and umbra spectra measured during the eclipse provides us with

information on different regions of Jupiter’s stratosphere. This is illustrated in Fig. 1 which shows the normalized

geometric contribution of the Sun’s disk at different phases during the penumbra and umbra. We can see that at some

phases of the eclipse, the projected Sun’s disk (as viewed from Ganymede) on Jupiter’s limb can be as low as a few tens
of km. The larger value denotes the Sun’s centre, and the sounded altitudes extend above and below. We should also

note the asymmetry of the sounded region, wider above and narrower below the Sun’s centre, caused by the weaker

(stronger) refraction of the thinner (denser) atmosphere above (below) the Sun’s centre. We should also note that the

Sun’s disk projected on Jupiter is less than 2 degrees in latitude and hence we are then sensing only 1 or 2 degrees of

the Jupiter equatorial zone. The consideration of the refraction effects for sounding different atmospheric layers has
also been recently illustrated by Dalba et al. (2015) in the analysis of a Cassini/VIMS solar occultation of Saturn.

The transmission spectra have been calculated by using the Karlsruhe Optimized and Precise Radiative Transfer

Algorithm (KOPRA, Stiller et al. 2002). KOPRA is a well-validated line-by-line radiative transfer model which has

implemented all the necessary physics for studying this problem. The code was originally developed for its application
to Earth’s atmosphere studies and has been lately adapted to the atmospheres of Titan and Mars (Garćıa-Comas et al.

2011; Robert et al. 2012), and now for Jupiter.

Our simulations include, besides the CH4 absorption bands, Rayleigh scattering by molecular hydrogen and helium,

collisions induced absorption (CIA) for H2-H2 and H2-He, and Mie scattering by aerosols and water ice.

Rayleigh scattering by molecular hydrogen and helium, which provides significant opacity mainly in the ultraviolet,
have been taken into account by including the Rayleigh optical cross sections provided by Ford & Browne (1973) for

H2 and of Chan & Dalgarno (1965) for helium. Its effect on the spectral range studied here of 0.5-2.5µm is, however,

of little significance compared to the other absorptions (see the cyan line in Fig. 3 at wavelengths of 0.5-0.7µm).

Ro-vibrational absorption bands resulting from collisions between pairs of H2-H2 and H2-He, the so-called collisions
induced absorption or CIA, are significant only in Jupiter’s lower atmosphere, where they form a smooth feature

centered in the 2.0-2.5 µm spectral region. Our simulations include this feature with absorption coefficients at low

temperatures, derived by Borysow (2002) for H2-H2 pairs, and by Borysow et al. (1989) and Borysow & Frommhold

(1989) for H2-He.

Other gases such as CO2, CO and H2O were considered, but because of their very low concentrations did not
contribute significantly to the absorption spectra. NH3 in the gas phase was found to absorb significantly only at

the low troposphere where the spectra are saturated at most wavelengths by the CH4 bands. Thus, it was not

included. The molecular spectroscopic data for all species have been taken from the HITRAN compilation, 2012

edition (Rothman et al. 2013).
In addition to the absorption due to the gaseous species, the Rayleigh scattering and the CIA absorption, we also

considered the Mie scattering by two kinds of stratospheric aerosols. One of them is constituted of aerosol particles

similar to those derived by Zhang et al. (2013) for equatorial regions from ground-based NIR spectra and multiple-

phase-angle images from the Cassini Imaging Science Subsystem (ISS). The other is water ice (see below).

In our derivation of aerosol information from the measured spectra (concentration, altitude distribution and size)
we have assumed fixed optical properties. There are several studies in literature about the complex refractive indices

of Jupiter’s aerosol near the equator although they are still rather uncertain. Mishchenko (1990) derived the real

part of the refraction index of the aerosols in the upper troposphere equatorial region of Jupiter with a value of

nr=1.39±0.01. Khare et al. (1984) measured that index for tholins-like aerosols in the laboratory obtaining values
from 1.62 to 1.70 for the 0.5-2.5 µm spectral range. They were measured, however, in an N2 environment, like in

Titan, rather than for the H2 environment of Jupiter. On the other hand, the real part of the refractive index of the

NH3 ice (Martonchik et al. 1984) has been generally used in the studies of Saturn’s upper tropospheric haze (see, e.g.

Fletcher et al. 2011; Barstow et al. 2016). This index is very close to 1.4 in the near-IR spectral range, practically

the same as that derived by Mishchenko (1990). In this work we have used the NH3 ice nr values measured by
Martonchik et al. (1984) for the aerosols and have carried out a test with the higher values and different spectral

dependency of the tholins-like aerosols of Khare et al. (1984). The imaginary part of the refractive index of the haze

was adjusted to the values derived by Zhang et al. (2013) of 0.02 and 10−3 at 0.25 and 0.9 µm, respectively, then,

linearly decreasing it to 10−4 at 1.5 µm, and keeping it constant at 10−4 up to 2.5 µm. As shown below, the imaginary
part of the refractive index of aerosols contributes, however, very little to our extinction calculations.

In order to reproduce the absorption features near 1.5 and 2.0 µm of the observed spectra (see Fig. 3), we also

included in the simulations extinction by water ice assuming Mie scattering. The optical properties of water ice

(real and imaginary part of the refractive index) included in the nominal simulations were taken from Mastrapa et al.

(2008) for crystalline water ice at the temperature of 150 K, typical of Jupiter’s lower stratosphere. However, we also
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performed other tests using the properties for the water ice at temperatures of 200-250 K reported by Warren & Brandt

(2008).

4. TEST MODEL AND SENSITIVITY STUDIES

Before carrying out the best fit analysis (see Sect. 5), we performed an analysis of three spectra corresponding to

different times of the eclipse –penumbra, early umbra, and mid umbra– which sound different altitudes of Jupiter’
stratosphere. Thus, we started from a basic test model and carried out sensitive studies that allowed us to explore

and roughly confine the parameters space that contribute to the transmission spectra. We should note that this model

is slightly different from the best-fit model for this spectrum obtained after performing the retrieval from the three

spectra (see Sect. 5).
The reference atmosphere of Jupiter used in the model, including pressure, temperature, CH4 (see Fig. 2) and other

species abundances, was taken from González et al. (2011). The CH4 vmr profile at the studied altitudes is very similar

to those obtained by other models (Moses et al. 2005; Kim et al. 2014), although it is significantly smaller at higher

altitudes. Tests using the higher CH4 vmr profile of Moses et al. (2005) (see Fig. 2), and by decreasing the kinetic

temperature in 10K have been performed (see discussion below).
From previous studies, e.g., Zhang et al. (2013) and by inspection of the transmission spectra (see Fig. 3), it is

clear that aerosols contribute to the transmission. Thus, we assume in the test model an aerosol layer that extents

from 50 mb (∼70 km above the 1000 mb level) up to about 0.01 mb (∼300 km) which is mainly concentrated at the

lowest altitudes (see Fig. 2). That is, it decays exponentially from a concentration of 4 particles/cm3 at 50 mb to
0.04 particles/cm3 near 0.01 mb with a total column density of 2.1×107 particles/cm2. The aerosol particles were

assumed to have a mono-modal lognormal distribution with a mean radius of 0.25 µm and a distribution width of

σ=0.3. Several tests assuming a bi-modal distribution with different sizes are discussed below. The shape of this

lognormal distribution is similar to that of the two-parameters gamma distribution used by Zhang et al. (2013).

The presence of water ice in Jupiter’s lower atmosphere was evident from the absorbing peaks near 1.5 and 2.0 µm.
We then included in the test model a thin layer of water ice particles located at the pressure range of 0.5-0.1 mbar

(180-200 km; see Fig. 2). The water ice cloud in this model was assumed to be composed of a mono-modal lognormal

distribution of small particles, a mean radius of 10 nm, and a distribution width of σ=0.3, with a peak concentration

at the base of the cloud of 3.3×107 particles cm−3. This results in a total column number density of 4.3×1013 particles
cm−2.

Figure 3 shows the early-umbra spectrum with simulations including the different absorbers/scatterers of the test

model described above. The contributing atmospheric layers to this spectrum correspond to the red line in Fig. 1.

The observed and simulated spectra show the most prominent CH4 bands, the extinction of the aerosol particles, and

the two distinct absorption features of water ice at 1.5 and 2.0µm. The cyan line includes absorption by CH4 bands
and also the Collision Induced Absorption (CIA) and the Rayleigh scattering. The latter is very small compared

to the other contributions, only noticeable at wavelengths near 0.5–0.7µm at the tangent heights covered by this

spectrum (see Fig. 1). The aerosols extinction increases significantly at shorter wavelengths, becoming the dominant

component. Water ice presents the two typical broad peaks near 1.5 and 2.0µm but also with significant contributions
in the 0.5–1.0µm region and near 2.3–2.5µm. With those absorbers, all major features of the measured spectrum are

reproduced although the overestimation of the transmission and its different shape in the 0.5–1.0 µm spectral region

are noticeable.

4.1. Sensitivity studies

In order to better understand the extinction features in the measured spectra and to further derive more precise
information of the aerosol and water ice layers, we performed several sensitivity studies.

Figure 4 shows the optical depth of the aerosols and water ice for a nadir (vertical) view of Jupiter’s atmosphere

calculated with the aerosol and water ice profiles of the test model (see Fig. 2). That figure shows the relative

contribution of the extinction from the haze and the water ice particles at different wavelengths. The haze dominates

up to about 1.9µm although water ice has a comparable absorption near 1.5µm. Note that this is for the test model
described above, and their relative contributions depend on the size distribution of both. We can also see that the

haze’s absorption (imaginary part) is negligible at all wavelengths studied here. The transmission of aerosols (see

Fig. 3) shows a large decrease (strong extinction) at wavelengths shorter than ∼1.5µm. Thus suggesting that the

aerosol’s extinction of the test model for the early umbra spectra at λ < 1µm is overestimated and does not have
the right shape. Figure 4 shows that the water ice extinction (given its assumed characteristics described above) is

dominated by absorption (imaginary part) at λ >1.4µm and by scattering extinction at shorter wavelengths. This
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behavior depends on the size of the water ice particles, as discussed below.

The dependency of the aerosol’s extinction on its particle’s size and its effect on transmission are shown in Fig. 5.

To show more clearly the dependency of the extinction cross section with wavelength, we have scaled them such that

the total aerosol volume is conserved, instead of the number of particles. The effects of the aerosol particles size on the
transmission of the early umbra spectrum is shown in the bottom panel of Fig. 5. The total column of the particles

of the test model has been kept fixed. Here we see that the spectral dependency of the haze transmission is rather

sensitive to the particles size. Thus, a way to decrease the extinction at wavelengths smaller than ∼1µm in the test

model (see Fig. 3) without reducing the aerosol mass load, is to assume that the particles are smaller than the test

radius of 0.25µm.
Regarding the water ice, we have analyzed several aspects: its temperature dependence, the size of the water

ice particles, and the altitude distribution of its concentration. As shown above, the extinction in the spectra are

dominated by water ice absorption near 1.5 and 2.0µm (see Fig. 4). The imaginary part of the water ice refraction

index, k, has been measured in the laboratory under different conditions. Mastrapa et al. (2008) have measured the
k index for the crystalline ice at a temperature of 150 K in this spectral range. Also Warren & Brandt (2008) has

measured it for the ice at the higher temperatures of 200-250 K. These measurements are shown in the top panel of

Fig. 6. The transmissions for these two measurements of the water ice are shown in the bottom panel of Fig. 6 for

the early-umbra spectrum and the water ice concentration of the test model (see Fig. 2). It is clearly seen that the

crystalline ice at a temperature of 150 K (Mastrapa et al. 2008) yields a better fit at the peaks of the ice absorption
bands near 1.5 and 2.0 micron, while for the ice at a temperature of 200-250 K (Warren & Brandt 2008) the peaks are

shifted to shorter wavelengths. Then we conclude that the water ice signatures revealed in the observed spectrum are

more likely due to the water ice at a temperature close to 150K, a typical temperature of the Jupiter stratosphere,

rather than at a higher temperature.
Figure 7 shows the sensitivity of the transmission to the water ice particles’ size. The upper panel shows the

extinction cross-section of the ice particles with the two components: absorption and scattering. Note that the cross

sections of particles with mean radii of rm=0.02-0.05µm have been scaled to the volume of the particles with a mean

radius of 0.01µm. The figure demonstrates the change of the relative contribution of the absorption peaks with respect

to the scattering as the particle’s size varies. For small particles, around 0.01µm, the absorption peaks near 1.5 and
2.0µm are significantly larger that the scattering contribution while, as the particles grow to about 0.05µm, their

relative contributions are significantly smaller. The effects on the simulated spectra for the early umbra conditions

(red curve in Fig. 1) are shown in the lower panel. The simulations assume the same total volume (or mass) of the

water ice, i.e., by adjusting the particles concentration for their sizes, and considering the test model inputs. Here we
observe that: i) the extinction is larger at all wavelengths for the larger particles; ii) the slope and shape at the shorter

wavelengths of 0.5–1.4µm change dramatically with the particle’s size; and iii) the depth of the absorption peaks and

the asymmetry in absorption at each side of the peak change significantly. For the smaller particles (0.01–0.02µm) the

depth is larger and the absorption is more symmetric, opposite to the absorption of the larger particles (0.03–0.05µm).

Hence, the size of water ice particles is likely in the 0.01–0.02µm range.

5. DERIVED AEROSOLS AND WATER ICE DISTRIBUTIONS

After the sensitivity study has been done and we establish the likely range of the main parameters, we have performed

a best-fit of the three observed spectra for the early phase of the penumbra, the early phase of the umbra and the

mid-umbra, respectively. The best-fit was based on obtaining the best balance between the smaller χ2 and the larger

correlation coefficient.
Figure 8 shows best-fit transmission spectra for the three measured spectra in the 0.5–2.5µm region. The estimated

sounded altitude ranges of Jupiter’s atmosphere for these spectra are shown in Fig. 1, corresponding to the black,

red, and dark blue lines, respectively. The χ2 is generally very small, with values of χ2/N in the range of of 6×10−5

to 1.4×10−3. The correlation coefficient is very close to one, better for the penumbra spectrum and smaller for the
mid-umbra conditions. The obtained distributions of the aerosols and water ice concentrations are discussed below

and shown in Fig. 11.

5.1. Upper region: the penumbra spectrum

The top curves in Fig. 8 correspond to the higher sounded altitudes of Jupiter stratosphere (see Fig. 1), above

200km (0.2 hPa). This measured spectrum does not show any sign of significant water ice absorption, thus indicating
that the water ice cloud is below this altitude. In addition to the CH4 absorbing bands, we see significant extinction

at λ . 1.5µm that increases to shorter wavelengths. This indicates the presence of aerosols at high altitudes, above
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200km (∼0.2 hPa). Note that the altitude (pressure) registration is rather accurate since the absorption by the CH4

bands, near 1.15, 1.7 and 2.3µm are well reproduced. These altitudes are well above those derived by Zhang et al.

(2013) near the equator (see their Fig. 3), comprised in the pressure range of 20–70hPa. Our observations, measuring

through the limb, where the geometry offers a larger optical path, are more sensitive than the nadir-like measurements
used by those authors; thus allowing us to measure the highest-altitude aerosols.

The shape of the extinction in the 0.5–1.5µm region also gives us information about the size of these high-altitude

aerosols. As shown in Fig. 5, the smaller aerosols produce a steeper transmission. The best fit to this spectrum

was obtained when considering two size distributions. The first one, producing most of the absorption at the shorter

wavelengths, has a mean radius of 0.10µm and a concentration of 2.66 particles cm−3, extending from 200 km up to
320km, giving a column density of ∼3.2×107 particles cm−2 and an aerosol load, assuming a mass density of about 1

g cm−3, of ∼2×10−7 g cm−2. In order to fit the spectrum in the 1–2µm region, a less-abundant second distribution

of aerosols with a larger radius is required. Hence, the higher altitudes of the ∼0.3µm distribution (see Fig. 11)

slightly contributes to this spectrum (see Fig. 1). That distribution is the major contributor to the extinction of the
early-umbra spectrum (see next subsection) and, in fact, the best fit to the penumbra spectrum alone requires that

the concentration in the upper few kms of the ∼0.3µm-distribution be reduced by a factor of 0.36.

At these altitudes, however, we see no evidence of the extinction of the 0.6µm larger particles.

5.2. Middle region: the early-umbra spectrum

The fitting of the early umbra spectrum is not as simple as for the penumbra spectrum. First, we see clearly the

signatures of water ice near 1.5 and 2.0µm, although it also contributes at other wavelengths (see Fig. 7). We already

discussed that the spectral positions of the peaks near 1.5 and 2.0µm reveal the presence of crystalline water ice at a
temperature close to 150K. Also, from the pronounced absorption valleys near those wavelengths and the very similar

absorptions at each side of the valleys (and among the valleys themselves), we deduce very small water ice particles (see

Fig. 7). Specifically, from the fit to the early-umbra spectrum in Fig. 8 we derive ice particles with a mean radius of

∼0.01µm. However, we cannot discard that a fraction of the particles have a larger size with mean radius of 0.02µm.
The ice concentration for the best fit (see Fig. 11) is very similar to that of the test model, with a peak value at the

base of the cloud of 3.6×107 particles cm−3 resulting in a water ice column density of ∼4.7×1013 particles cm−2; that

is, an ice mass load of ∼3×10−4 g cm−2.

The absorption near the ice peak at 1.5µm has not been fitted very well. We think it is due to a deficiency in our

model to adequately reproduce the aerosol slope extinction rather than that of water ice. Note that the depth of the
valley is well reproduced; it is the background continuum that actually differs.

As discussed above, the water ice cloud should be located below ∼200km (∼0.2 hPa). On the other hand, given

the sounding altitudes of this spectrum (red line in Fig. 1), it has to be present above 100 km (∼10hPa). We have

performed calculations by varying the position of the cloud (between 100 and 200 km) and its thickness and have
obtained the best fit with a layer of about 30 km thick with its basis located near 170km (∼0.5 hPa). Fig. 9 shows two

examples where the cloud was compressed to 10 km and shifted down to 100 km. We clearly see that the ice signatures

are worse reproduced and that locating the cloud at lower altitudes results in very weak absorption.

The fitting of the aerosol extinction in this wide spectral range is difficult. Attempts to reproduce the transmission

spectra with only one size distribution (σ=0.3) and varying the particles mean radii between 0.3 and 0.6µm were not
satisfactory (see, e.g. Fig. 3). In order to obtain a better fit to the shape at shorter wavelengths but producing a

significant extinction at longer wavelengths it was necessary to consider three particle size distributions. In addition to

the distribution at 0.3µm, one of smaller particles with a mean radius of 0.1µm (see above), producing the right shape

at shorter wavelengths, and another of larger particles, mean radius of 0.6µm, accounting for the larger extinction at
λ > 1.5µm. The fit shown in the middle curves of Fig. 8 was obtained with a concentration of 0.135 particles cm−3

with a mean radius of 0.3µm, extending from 80 km up to 230 km (see Fig. 11), giving a column density of ∼2×106

particles cm−2 and an aerosol load of ∼3.4×10−7 g cm−2. Both the 0.1µm distribution discussed above and the 0.6µm

layer discussed below also contribute to this spectrum but in order to achieve the best fit they need to be decreased

by factors of 0.61 and 0.67, respectively. Other additional size-intermediate aerosol distributions, and slightly different
concentrations (although with very similar mass loads), are not discarded. Small concentrations of particles larger

than the distribution of mean radius of 0.6µm with a σ of 0.3 are not discarded either.

The extinction at wavelengths of 2.35–2.5µm is significantly underestimated for any aerosol and water ice distribu-

tions. The CH4 absorption is rather weak at these wavelengths. It is unclear whether the required excess extinction
is caused by imperfect knowledge of the water ice at these wavelengths or any other type of aerosols.

The absorption in the CH4 bands near 1.15, 1.7 and 2.3 µm are slightly overestimated for this early-umbra spectrum
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(see Fig. 8). That is, the CH4 number density is overestimated. The CH4 vmr profile we used in the simulations is

already in the low limit of the currently accepted profiles (see Fig. 2). Hence, it is unlikely to be caused by the used CH4

vmr. However, the total number density might be overestimated at these altitudes. Simultaneous measurements of

the pressure-temperature (p-T) are not available and might differ from the model of González et al. (2011) used here.
A colder temperature profile at the lower altitudes would imply a more compressed atmosphere and then lighter at

higher altitudes. We have then performed calculations by decreasing the p-T profile in the entire altitude range by 10K

(see Fig. 2, dash-red line). The resulting transmittances (see Fig. 10) are in better agreement with the calculations,

particularly, at the stronger absorptions in the Q-branches of the CH4 bands.

5.3. Lower region: mid-umbra spectrum

The mid-umbra spectrum (bottom curves in Fig. 8) is noisier that the other spectra. We even see signatures of

emission lines (near 1.05µm) which reflects such a larger noise. The extinction is stronger and the shape at λ < 1µm

is significantly different. The simulations suggest that to fit such spectra we need particles larger than 0.3µm. The fit

in the figure was achieved with a concentration of 0.135 particles cm−3 with a mean radius of 0.6µm, extending from

60 km to 140km (see Fig. 11), giving a column density of ∼1.1×106 particles cm−2 and an aerosol load of ∼1.5×10−6

g cm−2. The 0.3µm aerosol layer discussed above also contributes to this extinction although in order to obtain the

best fit it was slightly (a factor of 0.85) attenuated. The water ice layer, however, has to be significantly reduced by a

factor of 0.035. One possible reason for the weaker water ice absorption at the lower altitudes could be that it is not

uniformly distributed in clouds.

6. DISCUSSION

The mean radius of the aerosol particles derived in this work (0.1–0.6µm) covers the range of 0.2 to 0.5 µm derived

by Zhang et al. (2013) for the equatorial particles. Our penumbra spectrum shows, however, that the haze distribution

of small particles (0.1µm) at rather high altitudes (from 0.1 to 0.01 or 0.001hPa) is present, otherwise its shape in the

0.5–1.5µm cannot be reproduced. Similarly, the strong extinction, particularly at λ >1.5µm, as well as the flatness
of the mid-umbra spectrum suggest the presence of large particles (up 0.6µm). The total load of the haze particles

above 100hPa of ∼2.0×10−6 g cm−2 is very similar to that derived by Zhang et al. (2013) of ∼1–2.0×10−6 g cm−2 at

low latitudes (see their Fig. 11). These results are also consistent with the Galileo observations reported by West et al.

(2004). The haze layer derived by Zhang et al. (2013) at low latitudes extends, at most, up to about 20 hPa. This

roughly coincides with our larger-particles haze layer which has a similar mass load of ∼1.5×10−6 g cm−2. However,
we need, in addition, the ∼0.3µm layer extending up to about 0.1 hPa and even a layer of finer particles (∼0.1µm) at

higher altitudes. Since our observations use a limb geometry, it is possible that the high-altitude particles could not be

resolved by the nadir ground-based NIR measurements and the Cassini-ISS images used by Zhang et al. (2013). We

should mention that because our haze layers extends over a wider pressure range than that of Zhang et al. (2013) (at
the equator) but have similar mass loading, our concentrations are significantly lower than the ones of those authors.

However, they are very similar to those derived by Rages et al. (1999), also taken from a limb geometry.

About the nature of the haze particles, our data do not provide information about what are they made of. Possibly

we are observing the compact sub-micron (CSM) particles described by Zhang et al. (2013). The origin of these

low latitudes particles is unclear although it has been suggested that it is different from that of the aerosols at
mid and high latitudes (Zhang et al. 2013). The latter are assumed to be fractal particles aggregated from very

small (∼10 nm) monomers, generated by complex hydrocarbon synthesis driven by the energetic particle precipitation

(charged particles) in the auroral region at high latitudes (Wong et al. 2003; Zhang et al. 2013). The low altitude

particles measured here, however, seem to be generated via neutral photochemical processes driven by the UV photons
(Zhang et al. 2013).

It is worth noting that we overestimate the aerosol extinction in the 1.4-1.7µm spectral region. We could not adjust

the aerosol contribution in the complete 0.5–2.3µm by changing the size or concentrations of the aerosols particles.

We used for the real part of the refraction index of the aerosols the values measured by (Martonchik et al. 1984) for

the NH3 ice (see Sec. 3). One possible reason is that this index is overestimated in that spectral region. On the
other hand, we systematically underestimate the absorption at 2.35-2.5µm (see early umbra spectrum in Fig. 8). It is

possible that another aerosol is contributing in this spectral region.

About the water ice layer, the absorption spectral features at 1.5 and 2.0µm can be very well reproduced in our model

with crystalline water ice at a temperature of 150K. The large depths of those features below the aerosol continuum
inform us that the particles are very small, of around 10 nm. Larger particles lead to shallower valleys. Thus, these

ice particles have a similar size to the monomers that compose the fractal aggregates (West & Smith 1991) derived by
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Zhang et al. (2013) at high latitudes in Jupiter’s stratosphere. The water ice layer is located at pressures below the

0.1 hPa pressure level; otherwise those signatures would also appear in the upper penumbra spectrum. Also, the best

fit to the spectra is obtained for a narrow layer which should not extend below ∼0.5 hPa. The measurements suggest

a vertical column of about 4.7×1013 particles/cm2 of ∼10nm size, which implies a water ice mass load of ∼3×10−4

g cm−2. This mass load is large when compared with current knowledge of the water vapor concentrations in Jupiter’s

stratosphere. On other hand, this water ice content is about a factor of 5 larger than the previous value obtained in

Montañés-Rodŕıguez et al. (2015). The reason is that we have now performed a better fit to the early umbra spectrum

and have included more accurate information of the aerosols absorption derived from the three spectra.

Cavalié et al. (2013) reported from HERSCHEL measurements, a water vapour column density above ∼2 hPa of
∼×1015mol cm−2 or 1.5×10−7 g cm−2. That is about 2000 times smaller than the water molecules contained in our

derived water ice layer. Considering the gas-ice equilibrium phase, the presence of water ice at the pressure-temperature

of this Jupiter region lead to a H2O vapour volume mixing ratio of ∼0.5 ppmv. This is five to fifty times larger than

the H2O volume mixing ratios in the range of 0.01–0.1ppmv of the Interplanetary Dust Particles (IDP) model and
the SL9 comet profiles that were derived by Cavalié et al. (2013) from HIFI/Herschel measurements.

We do not have a clear explanation for such larger amount of water ice. We should mention, however, that the

mid-umbra spectra suggests water ice amounts 30 times smaller, which could be explained if the water ice layer is

not homogeneously distributed over all longitudes around Jupiter’s stratospheric equator. About the origin of this

water ice, it seems unlikely that it comes from upper layers. One possibility could be its injection in the lower
stratosphere by plumes arising from the troposphere, e.g. as those observed by Sanchez-Lavega et al. (1991, 2008).

These plumes are powered by moist water convection and hence might inject significant water contents in the lower

stratosphere. The major difficulty of the transport from below is to cross the cold tropopause but, once this is reached,

the pressure-temperature conditions in the lower stratosphere are favorable for maintaining water in the form of ice.

7. SUMMARY AND CONCLUSIONS

In this work we have analyzed the limb transmission spectra of Jupiter’s atmosphere obtained by observing Ganymede
from the ground while passing through Jupiter’s shadow. The ratio of the spectra of Ganymede before and during the

eclipse removes the spectral features of the Sun, most of the telluric absorption and the spectral albedo of Ganymede.

The spectra cover from UV to near-IR (0.5 to 2.5µm are analyzed here) and have a high spectral resolution and high

signal-to-noise ratio. The spectra show strong extinction due to the presence of aerosols in the Jupiter’s atmosphere

and strong absorption features of methane. Furthermore, the transmission spectra reveal two broad features near 1.5
and 2.0 µm that we identified as caused by a water ice layer.

The significant refraction of Jupiter’s atmosphere together with the limb geometry allows us to obtain vertical

information of Jupiter’s stratosphere. In particular we have analysed three transmission spectra: penumbra, early

umbra and mid-umbra, that correspond to the altitude ranges of approximately 170–500km; 80–300km, and 60-
200km, and have derived a vertical distribution of the aerosols concentrations and some estimations of their size.

Specifically, our observations suggest the presence of aerosols near the equator in the altitude range of 100hPa up to

at least 0.01hPa (this upper limit could not be constrained and it might be even higher), with a clear distribution of a

layer of small aerosols with a mean radius of 0.1µm in the upper part (above 0.1 hPa), an intermediate layer of aerosols

with a mean radius of 0.3µm that extend approximately between 10 and 0.01hPa; and a layer of larger aerosols, of
∼0.6µm at approximately 100–1hPa. The corresponding loads for each layer are ∼2×10−7 g cm−2, ∼3.4×10−7 g cm−2,

and ∼1.5×10−6 g cm−2, respectively, with a total load of ∼2.0×10−6 g cm−2. While the layer distributions are not well

defined, e.g., distributions of intermediate similar sizes can also explain the spectra, the total load is well constrained,

as it is the location of the smaller aerosols at the top of the layers and that of the larger ones at the bottom.
The mass load of aerosols reported here is very similar to that derived by Zhang et al. (2013) at low latitudes

from ground-based NIR measurements and from the Cassini-ISS images. They are also consistent with the Galileo

observations reported by West et al. (2004). Our haze layers comprised between 100 hPa and 20 hPa roughly coincide

with those derived by Zhang et al. (2013) at low latitudes, although our particles are larger with two layers of mean

radii of 0.3 and 0.6µm while the mean radius of Zhang et al. is 0.3µm. However, we also observe an additional layer
of finer particles (mean radius of 0.1µm) above 0.1 hPa.

In addition, the spectra reveal the presence of a layer of very small crystalline water ice particles (∼10 nm) at pressure

levels of 0.5-0.1 hPa, with a mass load of ∼3×10−4 g cm−2. This mass load is much larger (about a factor of 2000)

than the column above 2 hPa measured by Herschel (Cavalié et al. 2013). Moreover, the gas-ice equilibrium phase at
the pressure-temperatures near 0.5 hPa, implies a water vapor concentration of 0.5 ppmv, which is a few tens larger

than that derived by (Cavalié et al. 2013) in the middle stratosphere. The origin of such large water ice amounts is
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not clear. The weaker water ice absorption at the middle-umbra spectrum suggests, however, that this layer might

not be distributed homogeneously along all longitudes. More measurements are required to disentangle whether the

large water ice amounts correspond to isolated, or time variable clouds, or if they originate from regular and uniform

water ice layers.
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Garćıa-Comas, M., López-Puertas, M., Funke, B., et al. 2011,

Icarus, 214, 571
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Table 1. Parameters of the models used in the sensitivity study.

Model Aerosol Water ice Water ice Water ice Water ice Temp.

particle size temp. particle size layer width layer height profile

(µm) (K) (µm) (km) (km)

Test (nominal) 0.25 150 0.01 30 170 Nominal (Fig. 2)

A (Fig. 5) 0.1–0.6 150 0.01 30 170 Nominal (Fig. 2)

B (Fig. 6) 0.25 200–250 0.01 30 170 Nominal (Fig. 2)

C (Fig. 7) 0.25 150 0.01–0.05 30 170 Nominal (Fig. 2)

D (Fig. 9a) 0.25 150 0.01 10 170 Nominal (Fig. 2)

E (Fig. 9b) 0.25 150 0.01 30 100 Nominal (Fig. 2)

F (Fig. 10) 0.25 150 0.01 30 170 Reduced by 10K


