199 research outputs found

    Feeding cessation alters host morphology and bacterial communities in the ascidian Pseudodistoma crucigaster

    Get PDF
    11 páginas, 2 tablas, 7 figurasBackground: Ascidians can associate with abundant and diverse consortia ofmicrobial symbionts, yet these communities remain unexamined for the majority of host ascidians and little is known about host-symbiont interactions. Methods: We coupled electron microscopy and 16S rRNA gene tag pyrosequencing to investigate the bacterial communities associated with the colonial ascidian Pseudodistoma crucigaster, a species endemic to theMediterranean Sea that has a life cycle with two phases: actively-filtering (active) and non-filtering (resting) forms. Results: Resting colonies exhibited a reduced branchial sac (feeding apparatus) and a thickened cuticle. Electron microscope images also suggested higher abundance of colonizing microorganisms on surfaces of resting colonies. Accordingly, bacterial sequences associated with environmental sources (sediment and biofilms, >99 % similarity) were detected exclusively in resting colonies. Bacterial communities of P. crucigaster colonies (active and resting) were dominated by 3 core taxa affiliated (>94 % similarity) with previously described symbiotic Alphaproteobacteria in marine invertebrates. Shifts in rare bacteria were detected when ascidians entered the resting phase, including the appearance of strictly anaerobic lineages and nitrifying bacterial guilds. Conclusions: These findings suggest that physical (thickened cuticle) and metabolic (feeding cessation) changes in host ascidians have cascading effects on associated bacteria, where modified oxygen concentrations and chemical substrates for microbial metabolism may create anaerobic microhabitats and promote colonization by environmental microorganisms.This research was funded by the Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG 277038 within the 7th European Community Framework Program, the Spanish Government projects MARSYMBIOMICS CTM2013-43287-P and CHALLENGEN CTM2013-48163, and the Catalan Government grant 2014SGR-336 for Consolidated Research Groups.Peer reviewe

    Ultrastructure, molecular phylogenetics and chlorophyll a content of novel cyanobacterial symbionts in temperate sponge hosts

    Get PDF
    Marine sponges often harbor photosynthetic symbionts that may enhance host metabolism and ecological success, yet little is known about the factors that structure the diversity, specificity, and nature of these relationships. Here, we characterized the cyanobacterial symbionts in two congeneric and sympatric host sponges that exhibit distinct habitat preferences correlated with irradiance: Ircinia fasciculata (higher irradiance) and Ircinia variabilis (lower irradiance). Symbiont composition was similar among hosts and dominated by the sponge-specific cyanobacterium Synechococcus spongiarum. Phylogenetic analyses of 16S-23S rRNA internal transcribed spacer (ITS) gene sequences revealed that Mediterranean Ircinia spp. host a specific, novel symbiont clade ("M") within the S. spongiarum species complex. A second, rare cyanobacterium related to the ascidian symbiont Synechocystis trididemni was observed in low abundance in I. fasciculata and likewise corresponded to a new symbiont clade. Symbiont communities in I. fasciculata exhibited nearly twice the chlorophyll a concentrations of I. variabilis. Further, S. spongiarum clade M symbionts in I. fasciculata exhibited dense intracellular aggregations of glycogen granules, a storage product of photosynthetic carbon assimilation rarely observed in I. variabilis symbionts. In both host sponges, S. spongiarum cells were observed interacting with host archeocytes, although the lower photosynthetic activity of Cyanobacteria in I. variabilis suggests less symbiont-derived nutritional benefit. The observed differences in clade M symbionts among sponge hosts suggest that ambient irradiance conditions dictate symbiont photosynthetic activity and consequently may mediate the nature of host-symbiont relationships. In addition, the plasticity exhibited by clade M symbionts may be an adaptive attribute that allows for flexibility in host-symbiont interactions across the seasonal fluctuations in light and temperature characteristic of temperate environments

    Till death do us part: Stable sponge-bacteria associations under thermal and food shortage stresses

    Get PDF
    Sporadic mass mortality events of Mediterranean sponges following periods of anomalously high temperatures or longer than usual stratification of the seawater column (i.e. low food availability) suggest that these animals are sensitive to environmental stresses. The Mediterranean sponges Ircinia fasciculata and I. oros harbor distinct, species-specific bacterial communities that are highly stable over time and space but little is known about how anomalous environmental conditions affect the structure of the resident bacterial communities. Here, we monitored the bacterial communities in I. fasciculata (largely affected by mass mortalities) and I. oros (overall unaffected) maintained in aquaria during 3 weeks under 4 treatments that mimicked realistic stress pressures: control conditions (13°C, unfiltered seawater), low food availability (13°C, 0.1 µm-filtered seawater), elevated temperatures (25°C, unfiltered seawater), and a combination of the 2 stressors (25°C, 0.1 µm-filtered seawater). Bacterial community structure was assessed using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA gene sequences and transmission electron microscopy (TEM). As I. fasciculata harbors cyanobacteria, we also measured chlorophyll a (chl a) levels in this species. Multivariate analysis revealed no significant differences in bacterial T-RFLP profiles among treatments for either host sponge species, indicating no effect of high temperatures and food shortage on symbiont community structure. In I. fasciculata, chl a content did not significantly differ among treatments although TEM micrographs revealed some cyanobacteria cells undergoing degradation when exposed to both elevated temperature and food shortage conditions. Arguably, longer-term treatments (months) could have eventually affected bacterial community structure. However, we evidenced no appreciable decay of the symbiotic community in response to medium-term (3 weeks) environmental anomalies purported to cause the recurrent sponge mortality episodes. Thus, changes in symbiont structure are not likely the proximate cause for these reported mortality events

    Stable populations in unstable habitats: temporal genetic structure of the introduced ascidian Styela plicata in North Carolina

    Get PDF
    14 páginas, 3 tablas, 4 figuras.The analysis of temporal genetic variability is an essential yet largely neglected tool to unveil and predict the dynamics of introduced species. We here describe the temporal genetic structure and diversity over time of an introduced population of the ascidian Styela plicata (Lesueur, 1823) in Wilmington (North Carolina, USA, 34°08′24″N, 77°51′44″W). This population suffers important salinity and temperature changes, and in June every year we observed massive die-offs, leaving free substratum that was recolonized within a month. We sampled 12–14 individuals of S. plicata every 2 months from 2007 to 2009 (N = 196) and analyzed a mitochondrial marker (the gene cytochrome oxidase subunit I, COI) and seven nuclear microsatellites. Population genetic analyses showed similar results for both types of markers and revealed that most of the genetic variation was found within time periods. However, analyses conducted with microsatellite loci also showed weak but significant differences among time periods. Specifically, in the samplings after die-off episodes (August–November 2007 and 2008) the genetic diversity increased, the inbreeding coefficient showed prominent drops, and there was a net gain of alleles in the microsatellite loci. Taken together, our results suggest that recruits arriving from neighboring populations quickly occupied the newly available space, bringing new alleles with them. However, other shifts in genetic diversity and allele loss and gain episodes were observed in December–January and February–March 2008, respectively, and were apparently independent of die-off events. Overall, our results indicate that the investigated population is stable over time and relies on a periodic arrival of larvae from other populations, maintaining high genetic diversity and a complex interplay of allele gains and losses.This research was supported by a grant from the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel (number 2014025), the Spanish Government project CTM2013—48163—and the Catalan Government Grant 2014SGR-336 for Consolidated Research Groups.Peer reviewe

    Ascidian fauna (Tunicata, Ascidiacea) of subantarctic and temperate regions of Chile

    Get PDF
    30 páginas, 15 figuras, 2 tablasWe studied the ascidian fauna from two zones located in subantarctic (Punta Arenas, latitude 53º) and temperate Chile (Coquimbo, latitude 29º). The different oceanographic features of the two zones, with influence of the Humboldt Current in the north and the Cape Horn Current System and freshwater inputs in the south, led to markedly different ascidian faunas. A total of 22 species were recorded, with no shared species across the two areas (11 species each). The new species Polyzoa iosune is described, Lissoclinum perforatum is found for the first time in the Pacific Ocean, and Synoicum georgianum and Polyzoa minor are new to the Chilean fauna. The populations of Ciona in the Coquimbo area (formerly attributed to Ciona intestinalis) correspond to the species Ciona robusta. A total of 35 Cytochrome oxidase (COI) sequences of the standard barcode region have been obtained for 17 of the 22 species reported.This research was funded by CONICYT Chile (Grant 80122006). Additional funding was obtained by XT from the Spanish Government (project CHALLENGEN CTM2013-48163) and by JIC from University of Magallanes: UMAG/DI&P Grant PR-F2-01CRN-12, CIMAR 18 & CIMAR 20 Fjords Chilean Navy, and GAIA-Antarctic Project (MINEDUC-UMAG). RMR received a research grant from CNPq–National Counsel of Technological and Scientific Development (304768/2010-3).Peer reviewe

    Optimization of fourteen microsatellite loci in a Mediterranean demosponge subjected to population decimation, Ircinia fasciculata

    Get PDF
    The recovery potential of decimated populations of sponges will largely hinge on their populations' size retrieval and their connectivity with conspecifics in unaffected locations. Here, we report on the development of microsatellite markers for estimation of the population connectivity and bottleneck and inbreeding signals in a Mediterranean sponge suffering from disease outbreaks, Ircinia fasciculata. From the 220,876 sequences obtained by genomic pyrosequencing, we isolated 14 polymorphic microsatellite loci and assessed the allelic variation of loci in 24 individuals from 2 populations in the Northwestern Mediterranean. The allele number per locus ranged from 3 to 11, observed heterozygosity from 0.68 to 0.73, and expected heterozygosity from 0.667 to 0.68. No significant linkage disequilibrium between pairs of loci was detected. The 14 markers developed here will be valuable tools for conservation strategies across the distributional range of this species allowing the detection of populations with large genetic diversity loss and high levels of inbreeding

    Plasticidad fenotípica de la esponja Callyspongia vaginalis (Porifera: Haplosclerida)

    Get PDF
    Sponge morphological plasticity has been a long-standing source of taxonomic difficulty. In the Caribbean, several morphotypes of the sponge Callyspongia vaginalis have been observed. To determine the taxonomic status of three of these morphotypes and their relationship with the congeneric species C. plicifera and C. fallax, we compared the spicule composition, spongin fiber skeleton and sequenced fragments of the mitochondrial genes 16S and COI and nuclear genes 28S and 18S ribosomal RNA. Phylogenetic analyses with ribosomal markers 18S and 28S rRNA confirmed the position of our sequences within the Callyspongiidae. None of the genetic markers provided evidence for consistent differentiation among the three morphotypes of C. vaginalis and C. fallax, and only C. plicifera stood as a distinct species. The 16S mtDNA gene was the most variable molecular marker for this group, presenting a nucleotide variability (π = 0.024) higher than that reported for COI. Unlike recent studies for other sponge genera, our results indicate that species in the genus Callyspongia maintain a high degree of phenotypic plasticity, and that morphological characteristics may not reflect reproductive boundaries in C. vaginalis.La gran plasticidad morfológica de ciertas esponjas dificulta una correcta clasificación taxonómica. En el Caribe, se han observado varios morfotipos de la esponja Callyspongia vaginalis a nivel de colores y formas. Con el fin de determinar su clasificación taxonómica, se muestrearon y analizaron tres morfotipos de C. vaginalis y sus especies congenéricas C. plicifera y C. fallax. Para cada muestra, se observó la composición espicular y del esqueleto dermal y se secuenciaron parte de los genes mitocondriales 16S y COI y parte de los genes ribosomales 28S y 18S. Los análisis filogenéticos con los genes ribosomales 18S y 28S confirmaron la posición taxonómica de las secuencias obtenidas. Ninguno de los marcadores genéticos utilizados reveló diferencias consistentes entre los tres morfotipos de C. vaginalis y C. fallax, y sólo C. pleicifera apareció en los análisis como una especie distinta. El gen mitocondrial 16S fue el marcador molecular más variable para este grupo, presentando una variabilidad nucleotídica (p = 0.024) superior a la descrita para COI. Nuestros resultados indican que las especies del género Callyspongia presentan una gran plasticidad fenotípica y que estas diferencias morfológicas no suponen barreras reproductivas para C. vaginalis

    Phenotypic plasticity in the Caribbean sponge Callyspongia vaginalis (Porifera: Haplosclerida)

    Get PDF
    Sponge morphological plasticity has been a long-standing source of taxonomic difficulty. In the Caribbean, several morphotypes of the sponge Callyspongia vaginalis have been observed. To determine the taxonomic status of three of these morphotypes and their relationship with the congeneric species C. plicifera and C. fallax, we compared the spicule composition, spongin fiber skeleton and sequenced fragments of the mitochondrial genes 16S and COI and nuclear genes 28S and 18S ribosomal RNA. Phylogenetic analyses with ribosomal markers 18S and 28S rRNA confirmed the position of our sequences within the Callyspongiidae. None of the genetic markers provided evidence for consistent differentiation among the three morphotypes of C. vaginalis and C. fallax, and only C. plicifera stood as a distinct species. The 16S mtDNA gene was the most variable molecular marker for this group, presenting a nucleotide variability (π = 0.024) higher than that reported for COI. Unlike recent studies for other sponge genera, our results indicate that species in the genus Callyspongia maintain a high degree of phenotypic plasticity, and that morphological characteristics may not reflect reproductive boundaries in C. vaginalis

    Genetic diversity, connectivity and gene flow along the distribution of the emblematic Atlanto-Mediterranean sponge Petrosia ficiformis (Haplosclerida, Demospongiae)

    Get PDF
    Background: Knowledge about the distribution of the genetic variation of marine species is fundamental to address species conservation and management strategies, especially in scenarios with mass mortalities. In the Mediterranean Sea, Petrosia ficiformis is one of the species most affected by temperature-related diseases. Our study aimed to assess its genetic structure, connectivity, and bottleneck signatures to understand its evolutionary history and to provide information to help design conservation strategies of sessile marine invertebrates. Results: We genotyped 280 individuals from 19 locations across the entire distribution range of P. ficiformis in the Atlanto-Mediterranean region at 10 microsatellite loci. High levels of inbreeding were detected in most locations (especially in the Macaronesia and the Western Mediterranean) and bottleneck signatures were only detected in Mediterranean populations, although not coinciding entirely with those with reported die-offs. We detected strong significant population differentiation, with the Atlantic populations being the most genetically isolated, and show that six clusters explained the genetic structure along the distribution range of this sponge. Although we detected a pattern of isolation by distance in P. ficiformis when all locations were analyzed together, stratified Mantel tests revealed that other factors could be playing a more prominent role than isolation by distance. Indeed, we detected a strong effect of oceanographic barriers impeding the gene flow among certain areas, the strongest one being the Almeria-Oran front, hampering gene flow between the Atlantic Ocean and the Mediterranean Sea. Finally, migration and genetic diversity distribution analyses suggest a Mediterranean origin for the species. Conclusions: In our study Petrosia ficiformis showed extreme levels of inbreeding and population differentiation, which could all be linked to the poor swimming abilities of the larva. However, the observed moderate migration patterns are highly difficult to reconcile with such poor larval dispersal, and suggest that, although unlikely, dispersal may also be achieved in the gamete phase. Overall, because of the high genetic diversity in the Eastern Mediterranean and frequent mass mortalities in the Western Mediterranean, we suggest that conservation efforts should be carried out specifically in those areas of the Mediterranean to safeguard the genetic diversity of the species

    Stochasticity in space, persistence in time: genetic heterogeneity in harbour populations of the introduced ascidian Styela plicata

    Get PDF
    Spatio-temporal changes in genetic structure among populations provide crucial information on the dynamics of secondary spread for introduced marine species. However, temporal components have rarely been taken into consideration when studying the population genetics of non-indigenous species. This study analysed the genetic structure of Styela plicata, a solitary ascidian introduced in harbours and marinas of tropical and temperate waters, across spatial and temporal scales. A fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) was sequenced from 395 individuals collected at 9 harbours along the NW Mediterranean coast and adjacent Atlantic waters (> 1,200 km range) at two time points 5 years apart (2009 and 2014). The levels of gene diversity were relatively low for all 9 locations in both years. Analyses of genetic differentiation and distribution of molecular variance revealed strong genetic structure, with significant differences among many populations, but no significant differences among years. A weak and marginally significant correlation between geographic distance and gene differentiation was found. Our results revealed spatial structure and temporal genetic homogeneity in S. plicata, suggesting a limited role of recurrent, vessel-mediated transport of organisms among small to medium-size harbours. Our study area is representative of many highly urbanized coasts with dense harbours. In these environments, the episodic chance arrival of colonisers appears to determine the genetic structure of harbour populations and the genetic composition of these early colonising individuals persists in the respective harbours, at least over moderate time frames (five years) that encompass ca. 20 generations of S. plicata
    corecore