948 research outputs found

    Tuning the microstructure of flash sintered BZT-BCT ceramics to obtain enhanced and singular properties

    Get PDF
    Please click Additional Files below to see the full abstract

    Analyzing the Improvements of Energy Management Systems for Hybrid Electric Vehicles Using a Systematic Literature Review: How Far Are These Controls from Rule-Based Controls Used in Commercial Vehicles?

    Get PDF
    Featured Application This work is useful for researchers interested in the study of energy management systems for hybrid electric vehicles. In addition, it is interesting for institutions related to the market of this type of vehicle. The hybridization of vehicles is a viable step toward overcoming the challenge of the reduction of emissions related to road transport all over the world. To take advantage of the emission reduction potential of hybrid electric vehicles (HEVs), the appropriate design of their energy management systems (EMSs) to control the power flow between the engine and the battery is essential. This work presents a systematic literature review (SLR) of the more recent works that developed EMSs for HEVs. The review is carried out subject to the following idea: although the development of novel EMSs that seek the optimum performance of HEVs is booming, in the real world, HEVs continue to rely on well-known rule-based (RB) strategies. The contribution of this work is to present a quantitative comparison of the works selected. Since several studies do not provide results of their models against commercial RB strategies, it is proposed, as another contribution, to complete their results using simulations. From these results, it is concluded that the improvement of the analyzed EMSs ranges roughly between 5% and 10% with regard to commercial RB EMSs; in comparison to the optimum, the analyzed EMSs are nearer to the optimum than commercial RB EMSs

    Tailoring the microstructure by a proper electric current control in flash sintering: The case of barium titanate

    Get PDF
    Flash sintering is arousing growing interest because high-density ceramics can be obtained at lower temperatures and shorter dwell times than conventional sintering. However, not only temperature and dwell times should be controlled during flash sintering but also parameters such as the electric field and electric current should be considered. Controlling all the parameters during the processing allows comprehensive control of the microstructure and, consequently, functional properties can be improved. In this work, it is evidenced that an exhaustive control of the flash electric current is a crucial factor for tailoring the microstructure of BaTiO3 ceramics. The results reveal that the most suitable way to control the sintering process is by using non-linear current profiles because better densification and improved grain growth is achieved. Although the results focus on BaTiO3, this work offers a new pathway to tailor the microstructure of flash sintered ceramics, which may be extended to other materials.Peer ReviewedPostprint (published version

    Fine-grained high-performance Ba0.85Ca0.15 Zr0.1Ti0.9O3 piezoceramics obtained by current-controlled flash sintering of nanopowders

    Get PDF
    Due to environmental concerns, extensive research has been carried out to develop high-performance lead-free piezoceramics capable of replacing commercial lead-based materials. The lead-free (Ba0.7Ca0.3)TiO3 -Ba(Zr0.2Ti0.8)O3 system has emerged as a candidate for room temperature transducer applications because a high piezoelectric charge coefficient is achieved in this system for compositions at the morphotropic phase boundary. However, conventional ceramic processing of these eco-friendly piezoceramics demands high energy consumption because long-lasting, high-temperature heat treatments are needed, which often lead to microstructural degradation that compromises the material reliability. Field-assisted flash sintering has started to be explored since the application of an adequate electric field was shown to significantly reduce the sintering time and temperature, thereby controlling grain growth. In this work, Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics are obtained by current-controlled flash sintering of mechanosynthesized nanopowders. Exhaustive control of the sintering parameters allows tailoring of the microstructure, which allows dense fine-grained flash-sintered ceramics exhibiting a high electric field-induced strain response to be obtained.This work was supported by the Agencia Estatal de Investigación (AEI), Spain, projects PGC2018-099158-B-I00 and PID2021–122708OB-C33. S. L-B. thanks Agència de Gestió d′Ajuts Universitaris i de Recerca (AGAUR), Catalonia, Spain, for the FI-SDUR contract (2020 FISDU 00489). The authors acknowledge the ESRF (The European Synchrotron) for provision of synchrotron radiation facilities, and we would like to thank the BM25 (SpLine) staff for assistance in using the beamline.Peer ReviewedPostprint (published version

    Particle size effect on the microstructure and the aging process of flash-sintered barium titanate from micro and nanopowders

    Get PDF
    Flash sintering is a novel sintering technique that allows high-density ceramics to be obtained at low temperatures and using short dwell times, thus providing an energy-efficient alternative to conventional sintering. The microstructure of flash-sintered samples can be fine-tuned by a proper control of electrical parameters such as current density, electric field, and current profile, yielding significant improvements of functional properties. The starting powder should also be carefully selected since better sintering results are reported for smaller green grain sizes. However, this work evidences time evolution of electrical properties of flash-sintered BaTiO3 ceramics from submicron powders. The results reveal that these transformations greatly depend on powder grain size and can be further adjusted with an adequate selection of electric power profiles. This work provides new insights into ongoing phenomena during field-assisted sintering, such as grain growth and defect formation dynamics. Although the results focus on BaTiO3, it offers a new pathway to tailor the microstructure of flash-sintered ceramics, which may be extended to other electronic materials.This work was supported by the Agencia Estatal de Investigación (AEI), Spain, project PGC2018-099158-B-I00. S. L-B. thanks Agència de Gestió dAjuts Universitaris i de Recerca (AGAUR), Catalonia, Spain, for the FI-SDUR contract (2020 FISDU 00489). The authors acknowledge the ESRF (The European Synchrotron) for provision of synchrotron radiation facilities, and we would like to thank the SpLine-BM25 staff for assistance in using the beamline.Peer ReviewedPostprint (published version

    Influence of seat-belt use on the severity of injury in traffic accidents

    Get PDF
    ABSTRACT: Background: About 1.35 million people died in traffic accidents around the world in 2018, make this type of accidents the 8th cause of death in the world. Particularly, in Spain, there were 204,596 traffic accidents during 2016 and 2017, out of which 349,810 drivers were injured. The objective of this study was to understand to what extent seat belt non-use and human factors contribute to drivers injury severity. Methodology: The results are based on the information and 2016-17 data provided by the Spain national traffic department "Dirección General de Tráfico" (DGT). The discretization model and Bayesian Networks were developed based on important variables from the literature. These variables were classified as; human factor, demographic factor, conditioning factor and seat belt use. Results: The results showed that failure to wear the seat belt by drivers are likely to increase the risk of fatal and sever injury significantly. Moreover, distraction and road type road can contribute to the accident severity

    Simulations of Gas Transport in Membranes Based on Polynorbornenes Functionalized with Substituted Imide Side Groups

    Get PDF
    This paper studies the diffusive and sorption steps of several gases across membranes cast from poly(N-phenyl-exo,endo-norbornene-5,6-dicarboximide) chloroform solutions. Chains packing effects on gas transport was investigated by conducting a parallel study on the permeation characteristics of membranes cast from hydrogenated poly(N-phenyl-exo,endo-norbornene-5,6-dicarboximide) chloroform solutions. The permeability coefficients of several gases in the two membranes were measured finding that hydrogenation of the norbornene moieties decreases gas permeability. The transition states approach was used to determine the trajectories of the gases in the two types of membranes from which the diffusion coefficients were obtained. Monte Carlo techniques based on the Widom method were used to simulate gas sorption process as a function of pressure. The values of the solubility coefficients thus obtained undergo a relatively sharp drop at low pressures approaching to a constant value as pressure increases. With the exception of carbon dioxide, pretty good agreement between the experimental and simulated values of the permeability coefficient is found for the gases studied.This work was supported by Comunidad de Madrid (CAM projects: GR/MAT/0810/2004; S-0505/MAT/0227) and CICYT (projects: MAT-2005-05648-C02-01, CTQ2005-04710/BQU; MAT2004-01347)

    Tailoring the microstructure by a proper electric current control in flash sintering: The case of barium titanate

    Full text link
    Flash sintering is arousing growing interest because high-density ceramics can be obtained at lower temperatures and shorter dwell times than conventional sintering. However, not only temperature and dwell times should be controlled during flash sintering but also parameters such as the electric field and electric current should be considered. Controlling all the parameters during the processing allows comprehensive control of the microstructure and, consequently, functional properties can be improved. In this work, it is evidenced that an exhaustive control of the flash electric current is a crucial factor for tailoring the microstructure of BaTiO3 ceramics. The results reveal that the most suitable way to control the sintering process is by using nonlinear current profiles because better densification and improved grain growth is achieved. Although the results focus on BaTiO3, this work offers a new pathway to tailor the microstructure of flash sintered ceramics, which may be extended to other materials

    Particle size effect on the microstructure and the aging process of flash-sintered barium titanate from micro and nanopowders

    Full text link
    Flash sintering is a novel sintering technique that allows high-density ceramics to be obtained at lowtemperatures and using short dwell times, thus providing an energy-efficient alternative to conventionalsintering. The microstructure of flash-sintered samples can be fine-tuned by a proper control ofelectrical parameters such as current density, electric field, and current profile, yielding significantimprovements of functional properties. The starting powder should also be carefully selected sincebetter sintering results are reported for smaller green grain sizes. However, this work evidences timeevolution of electrical properties of flash-sintered BaTiO3 ceramics from submicron powders. Theresults reveal that these transformations greatly depend on powder grain size and can be furtheradjusted with an adequate selection of electric power profiles. This work provides new insights intoongoing phenomena during field-assisted sintering, such as grain growth and defect formationdynamics. Although the results focus on BaTiO3, it offers a new pathway to tailor the microstructure offlash-sintered ceramics, which may be extended to other electronic materials
    corecore