203 research outputs found

    Sequencing of the rbcL Marker Reveals the Nonnative Red Alga Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) in Alabama

    Get PDF
    Mobile Bay, AL has been the site for the introduction of several terrestrial and freshwater invasive species, including red imported fire ants (Solenopsis invicta) and spike-topped apple snails (Pomacea bridgesii). The Gulf of Mexico has also been invaded by several marine animal species, such as zebra mussels (Dreissena polymorpha). To date, no invasive marine macroalga has been reported in the Mobile Bay area. However, recent collections of an unusual species of Grateloupia (Halymeniaceae, Rhodophyta) in Alabama indicate that an introduction has been made. On the basis of phylogenetic analysis of the large subunit of ribulose-1,5- bisphosphate carboxylase/oxygenase (rbcL) marker, the species has been identified as Grateloupia taiwanensis S.M. Lin & H.Y. Liang. This is the first report of G. taiwanensis outside its native range

    Complement Binding Anti-HLA Antibodies and the Survival of Kidney Transplantation

    Get PDF
    Background: Antibody-mediated rejection (AMR) is one of the most important challenges in the context of renal transplantation, because the binding of de novo donor-specific antibodies (dnDSA) to the kidney graft triggers the activation of the complement, which in turn leads to loss of transplant. In this context, the objective of this study was to evaluate the association between complement-fixing dnDSA antibodies and graft loss as well as the possible association between non-complement-fixing antibodies and transplanted organ survival in kidney transplant recipients. Methods: Our study included a cohort of 245 transplant patients over a 5-year period at Virgen de las Nieves University Hospital (HUVN) in Granada, Spain. Results: dnDSA was observed in 26 patients. Of these patients, 17 had non-complement-fixing dnDSA and 9 had complement-fixing dnDSA. Conclusions: Our study demonstrated a significant association between the frequency of rejection and renal graft loss and the presence of C1q-binding dnDSA. Our results show the importance of the individualization of dnDSA, classifying them according to their ability to activate the complement, and suggest that the detection of complement-binding capacity by dnDSA could be used as a prognostic marker to predict AMR outcome and graft survival in kidney transplant patients who develop dnDSA

    Shifts in crane migration phenology associated with climate change in southwestern Europe

    Get PDF
    Gallocanta lagoon, NE Spain, is one of the main stopover and wintering areas of Common Cranes (Grus grus) migrating through Western Europe. We investigated how the water level of the lagoon where cranes roost, precipitation, and air temperature might have influenced the species’ migration and wintering patterns in this area between 1973 and 2018. Over the study period, the mean annual air temperature increased at 0.3 °C per decade. Simultaneously, cranes advanced the spring peak migration date at a rate of 0.37 days/year. Water level and rainfall during spring were also positively correlated with the date of spring migration peak. Because cranes need shallow water to roost, and must drink water from streams because the lagoon is saline, these correlations suggest that low water levels at roosting sites and drinking water shortage may have further accelerated the onset of northward spring migration. The water level was also positively correlated with peak crane numbers in autumn, suggesting that the roosting capacity of the lagoon may limit numbers of cranes that can stopover in the area. We conclude that global warming, variations in the water level of the lagoon, and precipitation during spring have determined changes in the use of Gallocanta as a staging and wintering area by Common Cranes during the last decades. Because climatic models predict further decreases in rainfall and higher temperatures in the area, further advances in the migration phenology of cranes should be expected, which might also have implications for the conservation and management of the species and the study area.project AgroSOS (CGL2015-66016-R Spanish Ministry of Economy and Competitiveness - FEDER funds [EU])Government of Aragón (Spain) through a predoctoral internship to J. M. Orellana (BOA 20/07/2017)Peer reviewe

    SESAR Joint Undertaking report 2010

    Get PDF
    Abstract Salmonellosis is a gastrointestinal disease caused by non-typhoidal Salmonella serovars such as Salmonella Typhimurium. This pathology is a zoonosis, and food animals with subclinical infection constitute a vast reservoir for disease. After intestinal colonization, Salmonella Typhimurium reaches mesenteric lymph nodes (MLN), where infection is controlled avoiding systemic spread. Although the molecular basis of this infection has been extensively studied, little is known about how microRNA (miRNA) regulate the expression of proteins involved in the Salmonella-host interaction. Using small RNA-seq, we examined expression profiles of MLN 2 days after infection with Salmonella Typhimurium, and we found 110 dysregulated miRNA. Among them, we found upregulated miR-21, miR-155, miR-150, and miR-221, as well as downregulated miR-143 and miR-125, all of them previously linked to other bacterial infections. Integration with proteomic data revealed 30 miRNA potentially regulating the expression of 15 proteins involved in biological functions such as cell death and survival, inflammatory response and antigenic presentation. The inflammatory response was found increased via upregulation of miRNA such as miR-21 and miR-155. Downregulation of miR-125a/b, miR-148 and miR-1 were identified as potential regulators of MHC-class I components PSMB8, HSP90B1 and PDIA3, respectively. Furthermore, we confirmed that miR-125a is a direct target of immunoproteasome component PSMB8. Since we also found miR-130 downregulation, which is associated with upregulation of HSPA8, we suggest induction of both MHC-I and MHC-II antigen presentation pathways. In conclusion, our study identifies miRNA that could regulate critical networks for antigenic presentation, inflammatory response and cytoskeletal rearrangements

    Clinical Case: Patient with Mixed Graft Rejection Four Days after Kidney Transplantation Developed Specific Antibodies against Donor Bw4 Specificities.

    Get PDF
    Kidney transplantation, like other transplants, has the risk of producing graft rejection due to genetic differences between donor and recipient. The three known types of renal rejection are listed in the Banff classification: T-cell-mediated rejection (TCMR), antibody-mediated rejection (ABMR), and mixed rejection. The human leukocyte antigens (HLA) are highly polymorphic and may be the targets of donor-specific antibodies, resulting in ABMR. Therefore, prior to transplantation, it is necessary to analyze the HLA genotype of the donor and recipient, as well as the presence of DSA, in order to avoid hyperacute rejection. However, due to the shortage of kidneys, it is very difficult to find a donor and a recipient with completely matched HLA genotypes. This can trigger a future rejection of the kidney, as is reported in this work. We describe a patient who received a kidney transplant after a negative DSA test, who developed graft rejection with antibodies against the donor's HLA-Bw4 public epitope and lymphocytic infiltrate four days after transplantation, whose differential diagnosis was mixed rejection

    A Natural History of Floating <em>Sargassum</em> Species (Sargasso) from Mexico

    Get PDF
    For at least several centuries, sargasso has inhabited the Atlantic Ocean, and there are historical records of these algae reaching the Mexican Veracruz State in the Gulf of Mexico. Blooming of sargasso in the southern tropical Atlantic is a current a global problem from Africa to the Greater Caribbean. Since 2015, exceptionally large quantities of sargasso have been arriving intermittently on the Mexican Caribbean coast, affecting coastal ecosystems and tourist beaches. Sargasso includes two holopelagic species, Sargassum natans and S. fluitans, with several varieties. There are no records of sexual reproduction in these species, and the algae are thought to spread exclusively by clonal reproduction by fragmentation. Although sargasso seaweeds have grown in the Sargasso Sea for centuries; they have not been well studied. This chapter deals with historical aspects of these algae, their taxonomic and morphological characteristics, distribution, ecology, and practical uses. Sargasso blooms in the central Atlantic started in 2011. In later years, the bloom developed to extend from West Africa, Brazil, and the Great Caribbean, including West-Indies, Mexico, and the Gulf of Mexico. The pelagic sargasso is a global phenomenon that must be understood by integrating natural history, modern biology, social and economic aspects

    Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review

    Get PDF
    Many countries are immersed in several strategies to reduce the carbon dioxide (CO2) emissions of internal combustion engines. One option is the substitution of these engines by electric and/or hydrogen engines. However, apart from the strategic and logistical difficulties associated with this change, the application of electric or hydrogen engines in heavy transport, e.g., trucks, shipping, and aircrafts, also presents technological difficulties in the short-medium term. In addition, the replacement of the current car fleet will take decades. This is why the use of biofuels is presented as the only viable alternative to diminishing CO2 emissions in the very near future. Nowadays, it is assumed that vegetable oils will be the main raw material for replacing fossil fuels in diesel engines. In this context, it has also been assumed that the reduction in the viscosity of straight vegetable oils (SVO) must be performed through a transesterification reaction with methanol in order to obtain the mixture of fatty acid methyl esters (FAMEs) that constitute biodiesel. Nevertheless, the complexity in the industrial production of this biofuel, mainly due to the costs of eliminating the glycerol produced, has caused a significant delay in the energy transition. For this reason, several advanced biofuels that avoid the glycerol production and exhibit similar properties to fossil diesel have been developed. In this way, “green diesels” have emerged as products of different processes, such as the cracking or pyrolysis of vegetable oil, as well as catalytic (hydro)cracking. In addition, some biodiesel-like biofuels, such as Gliperol (DMC-Biod) or Ecodiesel, as well as straight vegetable oils, in blends with plant-based sources with low viscosity have been described as renewable biofuels capable of performing in combustion ignition engines. After evaluating the research carried out in the last decades, it can be concluded that green diesel and biodiesel-like biofuels could constitute the main alternative to addressing the energy transition, although green diesel will be the principal option in aviation fuel

    Regulatory role of microRNA in mesenteric lymph nodes after Salmonella Typhimurium infection

    Get PDF
    © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.[EN] Salmonellosis is a gastrointestinal disease caused by non-typhoidal Salmonella serovars such as Salmonella Typhimurium. This pathology is a zoonosis, and food animals with subclinical infection constitute a vast reservoir for disease. After intestinal colonization, Salmonella Typhimurium reaches mesenteric lymph nodes (MLN), where infection is controlled avoiding systemic spread. Although the molecular basis of this infection has been extensively studied, little is known about how microRNA (miRNA) regulate the expression of proteins involved in the Salmonella-host interaction. Using small RNA-seq, we examined expression profiles of MLN 2 days after infection with Salmonella Typhimurium, and we found 110 dysregulated miRNA. Among them, we found upregulated miR-21, miR-155, miR-150, and miR-221, as well as downregulated miR-143 and miR-125, all of them previously linked to other bacterial infections. Integration with proteomic data revealed 30 miRNA potentially regulating the expression of 15 proteins involved in biological functions such as cell death and survival, inflammatory response and antigenic presentation. The inflammatory response was found increased via upregulation of miRNA such as miR-21 and miR-155. Downregulation of miR-125a/b, miR-148 and miR-1 were identified as potential regulators of MHC-class I components PSMB8, HSP90B1 and PDIA3, respectively. Furthermore, we confirmed that miR-125a is a direct target of immunoproteasome component PSMB8. Since we also found miR-130 downregulation, which is associated with upregulation of HSPA8, we suggest induction of both MHC-I and MHC-II antigen presentation pathways. In conclusion, our study identifies miRNA that could regulate critical networks for antigenic presentation, inflammatory response and cytoskeletal rearrangements.SIThis work was supported by the Spanish Ministry of Economy and Competitiveness (AGL2011-28904 and AGL2014-54089). JHU is a predoctoral researcher supported by the FPI Research Program of the Spanish Ministry of Economy and Competitiveness (BES-2012-058642). SZL is a postdoctoral researcher supported by the Postdoctoral Trainee Program of the Spanish Ministry of Economy and Competitiveness (FPDI-2013-15619), and a postdoctoral contract co-funded by the XXI University of Cordoba Intramural research Program and the European Regional Development Funds (FEDER).We thank Reyes Alvarez for their technical assistance, and the Functional Genomics Core of the Institute for Research in Biomedicine (IRB) Barcelona for performing the library preparation and small RNA sequencin

    Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum

    Get PDF
    Infected pork meat is an important source of non-typhoidal human salmonellosis. Understanding of molecular mechanisms involved in disease pathogenesis is important for the development of therapeutic and preventive strategies. Thus, hereby we study the transcriptional profiles along the porcine intestine during infection with Salmonella Typhimurium, as well as post-transcriptional gene modulation by microRNAs (miRNA). Sixteen piglets were orally challenged with S. Typhimurium. Samples from jejunum, ileum and colon, collected 1, 2 and 6 days post infection (dpi) were hybridized to mRNA and miRNA expression microarrays and analyzed. Jejunum showed a reduced transcriptional response indicating mild inflammation only at 2 dpi. In ileum inflammatory genes were overexpressed (e.g., IL-1B, IL-6, IL-8, IL1RAP, TNFα), indicating a strong immune response at all times of infection. Infection also down-regulated genes of the FXR pathway (e.g., NR1H4, FABP6, APOA1, SLC10A2), indicating disruption of the bile acid absorption in ileum. This result was confirmed by decreased high-density lipoprotein cholesterol in serum of infected pigs. Ileal inflammatory gene expression changes peaked at 2 dpi and tended to resolve at 6 dpi. Furthermore, miRNA analysis of ileum at 2 dpi revealed 62 miRNAs potentially regulating target genes involved in this inflammatory process (e.g., miR-374 and miR-451). In colon, genes involved in epithelial adherence, proliferation and cellular reorganization were down-regulated at 2 and 6 dpi. In summary, here we show the transcriptional changes occurring at the intestine at different time points of the infection, which are mainly related to inflammation and disruption of the bile acid metabolism. © 2016 Uribe et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Clinical guidelines for late-onset Pompe disease

    Full text link
    English version available at www.neurologia.comHasta 2006, la enfermedad de Pompe o glucogenosis tipo II era una enfermedad incurable y con tratamiento meramente paliativo. El desarrollo de la terapia de sustitución con la enzima α-glucosidasa recombinante humana ha constituido el primer tratamiento específico para esta enfermedad. El objetivo de esta guía es servir de referencia en el manejo de la variedad de inicio tardío de la enfermedad de Pompe, es decir, la que aparece después del primer año de vida. En la guía, un grupo de expertos españoles hace recomendaciones específicas en cuanto a diagnóstico, seguimiento y tratamiento de esta enfermedad. En cuanto al diagnóstico, el método de la muestra en sangre seca es imprescindible como primer paso para el diagnóstico de la enfermedad de Pompe, y el diagnóstico de confirmación de la enfermedad de Pompe debe realizarse mediante un estudio de la actividad enzimática en muestra líquida en linfocitos aislados o mediante el análisis mutacional del gen de la alfa-glucosidasa. En cuanto al tratamiento de la enfermedad con terapia de sustitución enzimática, los expertos afirman que es eficaz en la mejoría o estabilización de la función motora y pulmonar, y debe iniciarse cuando aparezcan los síntomas atribuibles a la enfermedad de PompeBefore 2006, Pompe disease or glycogenosis storage disease type II was an incurable disease whose treatment was merely palliative. The development of a recombinant human alpha-glucosidase enzymatic replacement therapy has become the first specific treatment for this illness. The aim of this guide is to serve as reference for the management of the late-onset Pompe disease, the type of Pompe disease that develops after one year of age. In the guide a group of Spanish experts make specific recommendations about diagnosis, follow-up and treatment of this illness. With regard to diagnosis, the dried blood spots method is essential as the first step for the diagnosis of Pompe disease. The confirmation of the diagnosis of Pompe disease must be made by means of an study of enzymatic activity in isolated lymphocytes or a mutation analysis of the alpha-glucosidase gene. With regard to treatment with enzymatic replacement therapy, the experts say that is effective improving or stabilizating the motor function and the respiratory function and it must be introduced when the first symptoms attributable to Pompe disease appea
    corecore