321 research outputs found

    Numerical evidence for `multi-scalar stars'

    Get PDF
    We present a class of general relativistic soliton-like solutions composed of multiple minimally coupled, massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter family of solutions we call ``phase-shifted boson stars'' (parameterized by central density rho_0 and phase delta), which are obtained by solving the ordinary differential equations associated with boson stars and then altering the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well as the oscillating soliton stars found by Seidel and Suen [E. Seidel and W.M. Suen, Phys. Rev. Lett. 66, 1659 (1991)]; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our results indicate that scalar soliton-like solutions are perhaps more generic than has been previously thought.Comment: Revtex. 4 pages with 4 figures. Submitted to Phys. Rev.

    Theory of a Human Ecology of Communication: empirical evidence of the Internet consumption ecosystem in Ecuador

    Get PDF
    Since 2010 we have been analyzing Internet consumption indicators in Ecuador, characterized by the rapid growth in relation to nearby countries. This phenomenon, that transcends the statistical explanation, has been conducted in more than ten research reports published by the Research Center of Communication and Public Opinion (CICOP) of the Faculty of Communication at the Universidad de Los Hemisferios, who leads in the country the World Internet Project -WIP- project. This "transgression" suggests an interdisciplinary explanation, according to the complexity of human social ecosystem, to understand "how" it is possible to discern political and economic different and specific behaviors in social communication, according to sociodemographic characteristics, in a society like Ecuador, where the classic paradigms of communication theory breaks. In this sense we present the theoretical proposal entitled "Human Ecology of Communication" from the Internet consumption research conducted during the years 2010-2014 in Ecuador

    Supermassive black holes in scalar field galaxy halos

    Get PDF
    Ultra-light scalar fields provide an interesting alternative to WIMPS as halo dark matter. In this paper we consider the effect of embedding a supermassive black hole within such a halo, and estimate the absorption probability and the accretion rate of dark matter onto the black hole. We show that the accretion rate would be small over the lifetime of a typical halo, and hence that supermassive central black holes can coexist with scalar field halos.Comment: 5 pages RevTex4, no figures. Updated file to match published versio

    Unfolding of differential energy spectra in the MAGIC experiment

    Get PDF
    The paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses.Comment: Submitted to NIM

    Implementation of the Random Forest Method for the Imaging Atmospheric Cherenkov Telescope MAGIC

    Get PDF
    The paper describes an application of the tree classification method Random Forest (RF), as used in the analysis of data from the ground-based gamma telescope MAGIC. In such telescopes, cosmic gamma-rays are observed and have to be discriminated against a dominating background of hadronic cosmic-ray particles. We describe the application of RF for this gamma/hadron separation. The RF method often shows superior performance in comparison with traditional semi-empirical techniques. Critical issues of the method and its implementation are discussed. An application of the RF method for estimation of a continuous parameter from related variables, rather than discrete classes, is also discussed.Comment: 16 pages, 8 figure

    Fatigue in Women with Fibromyalgia: A Gene-Physical Activity Interaction Study

    Get PDF
    Fatigue is a cardinal symptom in fibromyalgia. Fatigue is assumed to be the result of genetic susceptibility and environmental factors. We aimed at examining the role of genetic susceptibility for fatigue in southern Spanish women with fibromyalgia, by looking at single nucleotide polymorphisms in 34 fibromyalgia candidate-genes, at the interactions between genes, and at the gene-physical activity interactions. We extracted DNA from saliva of 276 fibromyalgia women to analyze gene-polymorphisms. Accelerometers registered physical activity and sedentary behavior. Fatigue was assessed with the Multidimensional Fatigue Inventory. Based on the Bonferroni's and False Discovery Rate values, we found that the genotype of the rs4453709 polymorphism (sodium channel protein type 9 subunit alpha, SCN9A, gene) was related to reduced motivation (AT carriers showed the highest reduced motivation) and reduced activity (AA carriers showed the lowest reduced activity). Carriers of the heterozygous genotype of the rs1801133 (methylene tetrahydrofolate reductase, MTHFR, gene) or rs4597545 (SCN9A gene) polymorphisms who were physically active reported lower scores on fatigue compared to their inactive counterparts. Highly sedentary carriers of the homozygous genotype of the rs7607967 polymorphism (AA/GG genotype; SCN9A gene) presented more reduced activity (a dimension of fatigue) than those with lower levels of sedentary behavior. Collectively, findings from the present study suggest that the contribution of genetics and gene-physical activity interaction to fatigue in fibromyalgia is modest

    A new generation of real-time systems in the JET tokamak

    Get PDF
    Recently a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of the JET’s well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide realtime performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests’ (IRQs) affinities together with the kernel’s CPU isolation mechanism allows to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multicore architectures. In the past year, four new systems based on this philosophy have been installed and are now part of the JET’s routine operation. The focus of the present work is on the configuration and interconnection of the ingredients that enable these new systems’ real-time capability and on the impact that JET’s distributed real-time architecture has on system engineering requirements, such as algorithm testing and plant commissioning. Details are given about the common real-time configuration and development path of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronising over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel

    The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory

    Get PDF
    The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne telesocope in June 2009 for almost six days over the Arctic Circle. As a polarimeter IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mAA. IMaX uses the high Zeeman sensitive line of Fe I at 5250.2 AA and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15-0.18 arcsec range over a 50x50 arcsec FOV. Time cadences vary between ten and 33 seconds, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are four Gauss for longitudinal fields and 80 Gauss for transverse fields per wavelength sample. The LOS velocities are estimated with statistical errors of the order of 5-40 m/s. The design, calibration and integration phases of the instrument, together with the implemented data reduction scheme are described in some detail.Comment: 17 figure

    Cosmological Dynamics of Phantom Field

    Get PDF
    We study the general features of the dynamics of the phantom field in the cosmological context. In the case of inverse coshyperbolic potential, we demonstrate that the phantom field can successfully drive the observed current accelerated expansion of the universe with the equation of state parameter wϕ<1w_{\phi} < -1. The de-Sitter universe turns out to be the late time attractor of the model. The main features of the dynamics are independent of the initial conditions and the parameters of the model. The model fits the supernova data very well, allowing for 2.4<wϕ<1-2.4 < w_{\phi} < -1 at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear in Physical Review

    Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

    Get PDF
    We analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index \simeq 1 + (E/M_{QGn})^n, n = 1,2. Parametrizing the delay between gamma-rays of different energies as \Delta t =\pm\tau_l E or \Delta t =\pm\tau_q E^2, we find \tau_l=(0.030\pm0.012) s/GeV at the 2.5-sigma level, and \tau_q=(3.71\pm2.57)x10^{-6} s/GeV^2, respectively. We use these results to establish lower limits M_{QG1} > 0.21x10^{18} GeV and M_{QG2} > 0.26x10^{11} GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.Comment: 12 pages, 3 figures, Phys. Lett. B, reflects published versio
    corecore