1,077 research outputs found

    SDSS J125637-022452: a high proper motion L subdwarf

    Get PDF
    We report the discovery of a high proper motion L subdwarf (μ\mu =0.617arcsec/yr) in the Sloan Digital Sky Survey spectral database. The optical spectrum from the star SDSS J125637-022452 has mixed spectral features of both late-M spectral subtype (strong TiO and CaH at 7000A) and mid-L spectral subtype (strong wings of KI at 7700A, CrH and FeH), which is interpreted as the signature of a very low-mass, metal-poor star (ultra-cool subdwarf) of spectral type sdL. The near infrared (NIR) (J-Ks) colors from 2MASS shows the object to be significantly bluer compared to normal L dwarfs, which is probably due a strong collision induced absorption (CIA) due to H2 molecule. This is consistent with the idea that CIA from H2 is more pronounced at low metallicities. Proper motion and radial velocity measurements also indicate that the star is kinematically "hot" and probably associated with the Galactic halo population.Comment: 13 pages, 2 figures. Accepted for ApJ

    Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb

    Get PDF
    The formation of precise stereotypic connections in sensory systems is critical for the ability to detect and process signals from the environment. In the olfactory system, olfactory sensory neurons (OSNs) project axons to spatially defined glomeruli within the olfactory bulb (OB). A spatial relationship exists between the location of OSNs within the olfactory epithelium (OE) and their glomerular targets along the dorsoventral axis in the OB. The molecular mechanisms underlying the zonal segregation of OSN axons along the dorsoventral axis of the OB are poorly understood. Using robo-2/ (roundabout) and slit-1/ mice, we examined the role of the Slit family of axon guidance cues in the targeting of OSN axons during development. We show that a subset of OSN axons that normally project to the dorsal region of the OB mistarget and form glomeruli in the ventral region in robo-2/ and slit-1/ mice. In addition, we show that the Slit receptor, Robo-2, is expressed in OSNs in a high dorsomedial to low ventrolateral gradient across the OE and that Slit-1 and Slit-3 are expressed in the ventral region of the OB. These results indicate that the dorsal-to-ventral segregation of OSN axons are not solely defined by the location of OSNs within the OE but also relies on axon guidance cues

    Models for the 3-D axisymmetric gravitational potential of the Milky Way Galaxy - A detailed modelling of the Galactic disk

    Full text link
    Aims. Galaxy mass models based on simple and analytical functions for the density and potential pairs have been widely proposed in the literature. Disk models constrained by kinematic data alone give information on the global disk structure only very near the Galactic plane. We attempt to circumvent this issue by constructing disk mass models whose three-dimensional structures are constrained by a recent Galactic star counts model in the near-infrared and also by observations of the hydrogen distribution in the disk. Our main aim is to provide models for the gravitational potential of the Galaxy that are fully analytical but also with a more realistic description of the density distribution in the disk component. Methods. From the disk model directly based on the observations (here divided into the thin and thick stellar disks and the HI and H2_2 disks subcomponents), we produce fitted mass models by combining three Miyamoto-Nagai disk profiles of any "model order" (1, 2, or 3) for each disk subcomponent. The Miyamoto-Nagai disks are combined with models for the bulge and "dark halo" components and the total set of parameters is adjusted by observational kinematic constraints. A model which includes a ring density structure in the disk, beyond the solar Galactic radius, is also investigated. Results. The Galactic mass models return very good matches to the imposed observational constraints. In particular, the model with the ring density structure provides a greater contribution of the disk to the rotational support inside the solar circle. The gravitational potential models and their associated force-fields are described in analytically closed forms, and in addition, they are also compatible with our best knowledge of the stellar and gas distributions in the disk component. The gravitational potential models are suited for investigations of orbits in the Galactic disk.Comment: 22 pages, 13 figures, 11 tables, accepted for publication in A&

    A New Sample of Cool Subdwarfs from SDSS: Properties and Kinematics

    Get PDF
    We present a new sample of M subdwarfs compiled from the 7th data release of the Sloan Digital Sky Survey. With 3517 new subdwarfs, this new sample significantly increases the number of spectroscopically confirmed low-mass subdwarfs. This catalog also includes 905 extreme and 534 ultra sudwarfs. We present the entire catalog including observed and derived quantities, and template spectra created from co-added subdwarf spectra. We show color-color and reduced proper motion diagrams of the three metallicity classes, which are shown to separate from the disk dwarf population. The extreme and ultra subdwarfs are seen at larger values of reduced proper motion as expected for more dynamically heated populations. We determine 3D kinematics for all of the stars with proper motions. The color-magnitude diagrams show a clear separation of the three metallicity classes with the ultra and extreme subdwarfs being significantly closer to the main sequence than the ordinary subdwarfs. All subdwarfs lie below (fainter) and to the left (bluer) of the main sequence. Based on the average (U,V,W)(U,V,W) velocities and their dispersions, the extreme and ultra subdwarfs likely belong to the Galactic halo, while the ordinary subdwarfs are likely part of the old Galactic (or thick) disk. An extensive activity analysis of subdwarfs is performed using Hα\alpha emission and 208 active subdwarfs are found. We show that while the activity fraction of subdwarfs rises with spectral class and levels off at the latest spectral classes, consistent with the behavior of M dwarfs, the extreme and ultra subdwarfs are basically flat.Comment: 66 pages, 23 figures, accepted in Ap

    A new method for estimating the pattern speed of spiral structure in the Milky Way

    Get PDF
    In the last few decades many efforts have been made to understand the effect of spiral arms on the gas and stellar dynamics in the Milky Way disc. One of the fundamental parameters of the spiral structure is its angular velocity, or pattern speed Ωp\Omega_p, which determines the location of resonances in the disc and the spirals' radial extent. The most direct method for estimating the pattern speed relies on backward integration techniques, trying to locate the stellar birthplace of open clusters. Here we propose a new method based on the interaction between the spiral arms and the stars in the disc. Using a sample of around 500 open clusters from the {\it New Catalogue of Optically Visible Open Clusters and Candidates}, and a sample of 500 giant stars observed by APOGEE, we find Ωp=23.0±0.5\Omega_p = 23.0\pm0.5 km s1^{-1} kpc1^{-1}, for a local standard of rest rotation V0=220V_0=220~km s1^{-1} and solar radius R0=8.0R_0=8.0~kpc. Exploring a range in V0V_0 and R0R_0 within the acceptable values, 200-240 km s1^{-1} and 7.5-8.5 kpc, respectively, results only in a small change in our estimate of Ωp\Omega_p, that is within the error. Our result is in close agreement with a number of studies which suggest values in the range 20-25 km s1^{-1} kpc1^{-1}. An advantage of our method is that we do not need knowledge of the stellar age, unlike in the case of the birthplace method, which allows us to use data from large Galactic surveys. The precision of our method will be improved once larger samples of disk stars with spectroscopic information will become available thanks to future surveys such as 4MOST.Comment: 10 pages, 6 figures, 4 tables, accepted for publication in MNRA

    On the Importance of the Interclump Medium for Superionization: O VI Formation in the Wind of Zeta Pup

    Full text link
    We have studied superionization and X-ray line formation in the spectra of Zeta Pup using our new stellar atmosphere code (XCMFGEN) that can be used to simultaneously analyze optical, UV, and X-ray observations. Here, we present results on the formation of the O VI ll1032, 1038 doublet. Our simulations, supported by simple theoretical calculations, show that clumped wind models that assume void in the interclump space cannot reproduce the observed O VI profiles. However, enough O VI can be produced if the voids are filled by a low density gas. The recombination of O VI is very efficient in the dense material but in the tenuous interclump region an observable amount of O VI can be maintained. We also find that different UV resonance lines are sensitive to different density regimes in Zeta Pup : C IV is almost exclusively formed within the densest regions, while the majority of O VI resides between clumps. N V is an intermediate case, with contributions from both the tenuous gas and clumps.Comment: Accepted for publication in ApJL, 4 pages with 3 figure

    A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy

    Full text link
    We propose a new, more realistic, description of the perturbed gravitational potential of spiral galaxies, with spiral arms having Gaussian-shaped groove profiles. We investigate the stable stellar orbits in galactic disks, using the new perturbed potential. The influence of the bulge mass on the stellar orbits in the inner regions of a disk is also investigated. The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We find a range of values for the perturbation amplitude from 400 to 800 km^2 s^{-2} kpc^{-1} which implies a maximum ratio of the tangential force to the axisymmetric force between 3% and 6%, approximately. Good self-consistency of arm shapes is obtained between the Inner Lindblad resonance (ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts to deviate from the imposed logarithmic spiral form. This creates bifurcations that appear as short arms. Therefore the deviation from a perfect logarithmic spiral in galaxies can be understood as a natural effect of the 4:1 resonance. Beyond the 4:1 resonance we find closed orbits which have similarities with the arms observed in our Galaxy. In regions near the center, in the presence of a massive bulge, elongated stellar orbits appear naturally, without imposing any bar-shaped potential, but only extending the spiral perturbation a little inward of the ILR. This suggests that a bar is formed with a half-size around 3 kpc by a mechanism similar to that of the spiral arms. The potential energy perturbation that we adopted represents an important step in the direction of self-consistency, compared to previous sine function descriptions of the potential. Our model produces a realistic description of the spiral structure, able to explain several details that were not yet understood.Comment: 12 pag., 11 fig. Accepted for publication in A&A, 2012 December 1

    UCAC3 Proper Motion Survey. I. Discovery of New Proper Motion Stars in UCAC3 with 0.40 "/yr > mu >= 0.18 "/yr between Declinations -90 deg and -47 deg

    Full text link
    Presented here are 442 new proper motion stellar systems in the southern sky between declinations -90\degr and -47\degr with 0\farcs40 yr1^{-1} >> μ\mu \ge 0\farcs18 yr1^{-1}. These systems constitute a 25.3% increase in new systems for the same region of the sky covered by previous SuperCOSMOS RECONS (SCR) searches that used Schmidt plates as the primary source of discovery. Among the new systems are 25 multiples, plus an additional seven new common proper motion companions found to previously known primaries. All stars have been discovered using the third U.S. Naval Observatory (USNO) CCD Astrograph Catalog (UCAC3). A comparison of the UCAC3 proper motions to those from the Hipparcos, Tycho-2, Southern Proper Motion (SPM4), and SuperCOSMOS efforts is presented, and shows that UCAC3 provides similar values and precision to the first three surveys. The comparison between UCAC3 and SuperCOSMOS indicates that proper motions in RA are systematically shifted in the SuperCOSMOS data but are consistent in DEC data, while overall showing a significantly higher scatter. Distance estimates are derived for stars having SuperCOSMOS Sky Survey (SSS) BJB_J, R59FR_{59F}, and IIVNI_{IVN} plate magnitudes and Two-Micron All Sky Survey (2MASS) infrared photometry. We find 15 systems estimated to be within 25 pc, including UPM 1710-5300 our closest new discovery estimated at 13.5 pc. Such new discoveries suggest that more nearby stars are yet to be found in these slower proper motion regimes, indicating that more work is needed to develop a complete map of the solar neighborhood.Comment: 24 pages, 7 figures, 4 tables, accepted to the Astronomical Journal July 07, 201
    corecore