We have studied superionization and X-ray line formation in the spectra of
Zeta Pup using our new stellar atmosphere code (XCMFGEN) that can be used to
simultaneously analyze optical, UV, and X-ray observations. Here, we present
results on the formation of the O VI ll1032, 1038 doublet. Our simulations,
supported by simple theoretical calculations, show that clumped wind models
that assume void in the interclump space cannot reproduce the observed O VI
profiles. However, enough O VI can be produced if the voids are filled by a low
density gas. The recombination of O VI is very efficient in the dense material
but in the tenuous interclump region an observable amount of O VI can be
maintained. We also find that different UV resonance lines are sensitive to
different density regimes in Zeta Pup : C IV is almost exclusively formed
within the densest regions, while the majority of O VI resides between clumps.
N V is an intermediate case, with contributions from both the tenuous gas and
clumps.Comment: Accepted for publication in ApJL, 4 pages with 3 figure