1,375 research outputs found

    Transdet: a matched-filter based algorithm for transit detection - application to simulated COROT light curves

    Full text link
    We present a matched-filter based algorithm for transit detection and its application to simulated COROT light curves. This algorithm stems from the work by Bord\'e, Rouan & L\'eger (2003). We describe the different steps we intend to take to discriminate between planets and stellar companions using the three photometric bands provided by COROT. These steps include the search for secondary transits, the search for ellipsoidal variability, and the study of transit chromaticity. We also discuss the performance of this approach in the context of blind tests organized inside the COROT exoplanet consortium.Comment: 6 pages, 4 figures, in Transiting Extrasolar Planets Workshop, meeting held in Heidelberg, 25-28 September 200

    Geometrical effects on the optical properties of quantum dots doped with a single magnetic atom

    Full text link
    The emission spectra of individual self-assembled quantum dots containing a single magnetic Mn atom differ strongly from dot to dot. The differences are explained by the influence of the system geometry, specifically the in-plane asymmetry of the quantum dot and the position of the Mn atom. Depending on both these parameters, one has different characteristic emission features which either reveal or hide the spin state of the magnetic atom. The observed behavior in both zero field and under magnetic field can be explained quantitatively by the interplay between the exciton-manganese exchange interaction (dependent on the Mn position) and the anisotropic part of the electron-hole exchange interaction (related to the asymmetry of the quantum dot).Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let

    2D Fourier Transform Spectroscopy of exciton-polaritons and their interactions

    Get PDF
    We investigate polariton-polariton interactions in a semiconductor microcavity through two-dimensional Fourier transform (2DFT) spectroscopy. We observe, in addition to the lower-lower and the upper-upper polariton self-interaction, a lower-upper cross-interaction. This appears as separated peaks in the on-diagonal and off-diagonal part of 2DFT spectra. Moreover, we elucidate the role of the polariton dispersion through a fine structure in the 2DFT spectrum. Simulations, based on lower-upper polariton basis Gross-Pitaevskii equations including both self and cross-interactions, result in a 2DFT spectra in qualitative agreement with experiments

    The optical spectrum of a large isolated polycyclic aromatic hydrocarbon: hexa-peri-hexabenzocoronene, C42H18

    Full text link
    The first optical spectrum of an isolated polycyclic aromatic hydrocarbon large enough to survive the photophysical conditions of the interstellar medium is reported. Vibronic bands of the first electronic transition of the all benzenoid polycyclic aromatic hydrocarbon hexa-peri-hexabenzocoronene were observed in the 4080-4530 Angstrom range by resonant 2-color 2-photon ionization spectroscopy. The strongest feature at 4264 Angstrom is estimated to have an oscillator strength of f=1.4x10^-3, placing an upper limit on the interstellar abundance of this polycyclic aromatic hydrocarbon at 4x10^12 cm^-2, accounting for a maximum of ~0.02% of interstellar carbon. This study opens up the possibility to rigorously test neutral polycyclic aromatic hydrocarbons as carriers of the diffuse interstellar bands in the near future.Comment: 9 pages, 1 figure. Fixed a typo on the frequency of the 'b' ban

    Stellar Limb-Darkening Coefficients for CoRot and Kepler

    Get PDF
    Transiting exoplanets provide unparalleled access to the fundamental parameters of both extrasolar planets and their host stars. We present limb-darkening coefficients (LDCs) for the exoplanet hunting CoRot and Kepler missions. The LDCs are calculated with ATLAS stellar atmospheric model grids and span a wide range of Teff, log g, and metallically [M/H]. Both CoRot and Kepler contain wide, nonstandard response functions, and are producing a large inventory of high-quality transiting lightcurves, sensitive to stellar limb darkening. Comparing the stellar model limb darkening to results from the first seven CoRot planets, we find better fits are found when two model intensities at the limb are excluded in the coefficient calculations. This calculation method can help to avoid a major deficiency present at the limbs of the 1D stellar models.Comment: Accepted for publication in A&A. 4 pages, 2 figures, 2 tables. Full versions of tables 1 and 2 containing limb-darkening coefficients available at http://vega.lpl.arizona.edu/~sing

    Diagnostics for specific PAHs in the far-IR: searching neutral naphthalene and anthracene in the Red Rectangle

    Get PDF
    Context. In the framework of the interstellar polycyclic aromatic hydrocarbons (PAHs) hypothesis, far-IR skeletal bands are expected to be a fingerprint of single species in this class. Aims. We address the question of detectability of low energy PAH vibrational bands, with respect to spectral contrast and intensity ratio with ``classical'' Aromatic Infrared Bands (AIBs). Methods. We extend our extablished Monte-Carlo model of the photophysics of specific PAHs in astronomical environments, to include rotational and anharmonic band structure. The required molecular parameters were calculated in the framework of the Density Functional Theory. Results. We calculate the detailed spectral profiles of three low-energy vibrational bands of neutral naphthalene, and four low-energy vibrational bands of neutral anthracene. They are used to establish detectability constraints based on intensity ratios with ``classical'' AIBs. A general procedure is suggested to select promising diagnostics, and tested on available Infrared Space Observatory data for the Red Rectangle nebula. Conclusions. The search for single, specific PAHs in the far-IR is a challenging, but promising task, especially in view of the forthcoming launch of the Herschel Space Observatory.Comment: 13 pages, 13 figures, accepted for publication in A&

    Visible photodissociation spectroscopy of PAH cations and derivatives in the PIRENEA experiment

    Full text link
    The electronic spectra of gas-phase cationic polycyclic aromatic hydrocarbons (PAHs), trapped in the Fourier Transform Ion Cyclotron Resonance cell of the PIRENEA experiment, have been measured by multiphoton dissociation spectroscopy in the 430-480 nm spectral range using the radiation of a mid-band optical parametric oscillator laser. We present here the spectra recorded for different species of increasing size, namely the pyrene cation (C16H10+), the 1-methylpyrene cation (CH3-C16H9+), the coronene cation (C24H12+), and its dehydrogenated derivative C24H10+. The experimental results are interpreted with the help of time-dependent density functional theory calculations and analysed using spectral information on the same species obtained from matrix isolation spectroscopy data. A kinetic Monte Carlo code has also been used, in the case of pyrene and coronene cations, to estimate the absorption cross-sections of the measured electronic transitions. Gas-phase spectra of highly reactive species such as dehydrogenated PAH cations are reported for the first time

    Prewetting transition on a weakly disordered substrate : evidence for a creeping film dynamics

    Full text link
    We present the first microscopic images of the prewetting transition of a liquid film on a solid surface. Pictures of the local coverage map of a helium film on a cesium metal surface are taken while the temperature is raised through the transition. The film edge is found to advance at constant temperature by successive avalanches in a creep motion with a macroscopic correlation length. The creep velocity varies strongly in a narrow temperature range. The retreat motion is obtained only at much lower temperature, conforming to the strong hysteresis observed for prewetting transition on a disordered surface. Prewetting transition on such disordered surfaces appears to give rise to dynamical phenomena similar to what is observed for domain wall motions in 2D magnets.Comment: 7 pages, 3 figures, to be published in Euro.Phys.Let

    Electrowetting of liquid marbles

    Get PDF
    Electrowetting of water drops on structured superhydrophobic surfaces are known to cause an irreversible change from a slippy (Cassie-Baxter) to a sticky (Wenzel) regime. An alternative approach to using a water drop on a superhydrophobic surface to obtain a non-wetting system is to use a liquid marble on a smooth solid substrate. A liquid marble is a droplet coated in hydrophobic grains, which therefore carries its own solid surface structure as a conformal coating. Such droplets can be considered as perfect non-wetting systems having contact angles to smooth solid substrates of close to 180 degrees. In this work we report the electrowetting of liquid marbles made of water coated with hydrophobic lycopodium grains and show that the electrowetting is completely reversible. Marbles are shown to return to their initial contact angle for both ac and dc electrowetting and without requiring a threshold voltage to be exceeded. Furthermore, we provide a proof-of-principle demonstration that controlled motion of marbles on a finger electrode structure is possible

    Spreading of Latex Particles on a Substrate

    Full text link
    We have investigated both experimentally and theoretically the spreading behavior of latex particles deposited on solid substrates. These particles, which are composed of cross-linked polymer chains, have an intrinsic elastic modulus. We show that the elasticity must be considered to account for the observed contact angle between the particle and the solid substrate, as measured through atomic force microscopy techniques. In particular, the work of adhesion computed within our model can be significantly larger than that from the classical Dupr\'{e} formula.Comment: 7 pages, 7 figures, to appear in Europhys. Let
    • …
    corecore