7 research outputs found

    Integrin α11β1 in tumor fibrosis:more than just another cancer‑associated fibroblast biomarker?

    Get PDF
    Abstract There is currently an increased interest in understanding the role of the tumor microenvironment (TME) in tumor growth and progression. In this context the role of integrins in cancer-associated fibroblasts (CAFs) will need to be carefully re-evaluated. Fibroblast-derived cells are not only in the focus in tumors, but also in tissue fibrosis as well as in inflammatory conditions. The recent transcriptional profiling of what has been called “the pan-fibroblast cell lineage” in mouse and human tissues has identified novel transcriptional biomarker mRNAs encoding the secreted ECM proteins dermatopontin and collagen XV as well as the phosphatidylinositol-anchored membrane protein Pi16. Some of the genes identified in these fibroblasts scRNA-seq datasets will be useful for rigorous comparative characterizations of fibroblast-derived cell subpopulations. At the same time, it will be a challenge in the coming years to validate these transcriptional mRNA datasets at the protein-(expression) and at tissue-(distribution) levels and to find useful protein biomarker reagents that will facilitate fibroblast profiling at the cell level. In the current review we will focus on the role of the collagen-binding integrin α11β1 in CAFs, summarizing our own work as well as published datasets with information on α11 mRNA expression in selected tumors. Our experimental data suggest that α11β1 is more than just another biomarker and that it as a functional collagen receptor in the TME is playing a central role in regulating collagen assembly and matrix remodeling, which in turn impact tumor growth and metastasis

    A dominant negative splice variant of the heparan sulfate biosynthesis enzyme NDST1 reduces heparan sulfate sulfation

    No full text
    Abstract NDST1 (glucosaminyl N-deacetylase/N-sulfotransferase) is a key enzyme in heparan sulfate (HS) biosynthesis, where it is responsible for HS N-deacetylation and N-sulfation. In addition to the full length human enzyme of 882 amino acids, here designated NDST1A, a shorter form containing 825 amino acids (NDST1B) is synthesized after alternative splicing of the NDST1 mRNA. NDST1B is mostly expressed at a low level, but increased amounts are seen in several types of cancer where it is associated with shorter survival. In this study, we aimed at characterizing the enzymatic properties of NDST1B and its effect on HS biosynthesis. Purified recombinant NDST1B lacked both N-deacetylase and N-sulfotransferase activities. Interestingly, HEK293 cells overexpressing NDST1B synthesized HS with reduced sulfation and altered domain structure. Fluorescence resonance energy transfer-microscopy demonstrated that both NDST1A and NDST1B had the capacity to interact with the HS copolymerase subunits EXT1 and EXT2 and also to form NDST1A/NDST1B dimers. Since lysates from cells overexpressing NDST1B contained less NDST enzyme activity than control cells, we suggest that NDST1B works in a dominant negative manner, tentatively by replacing the active endogenous NDST1 in the enzyme complexes taking part in biosynthesis

    Fibroblast α11β1 Integrin Regulates Tensional Homeostasis in Fibroblast/A549 Carcinoma Heterospheroids

    Get PDF
    We have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of α11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin α11β1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast α11β1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal α11β1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy
    corecore