227 research outputs found
Pervasive protein thermal stability variation during the cell cycle
Quantitative mass spectrometry has established proteome-wide regulation of protein abundance and post-translational modifications in various biological processes. Here, we used quantitative mass spectrometry to systematically analyze the thermal stability and solubility of proteins on a proteome-wide scale during the eukaryotic cell cycle. We demonstrate pervasive variation of these biophysical parameters with most changes occurring in mitosis and G1. Various cellular pathways and components vary in thermal stability, such as cell-cycle factors, polymerases, and chromatin remodelers. We demonstrate that protein thermal stability serves as a proxy for enzyme activity, DNA binding, and complex formation in situ. Strikingly, a large cohort of intrinsically disordered and mitotically phosphorylated proteins is stabilized and solubilized in mitosis, suggesting a fundamental remodeling of the biophysical environment of the mitotic cell. Our data represent a rich resource for cell, structural, and systems biologists interested in proteome regulation during biological transitions
Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion
Cell migration entails networks and bundles of actin filaments termed lamellipodia and microspikes or filopodia, respectively, as well as focal adhesions, all of which recruit Ena/VASP family members hitherto thought to antagonize efficient cell motility. However, we find these proteins to act as positive regulators of migration in different murine cell lines. CRISPR/Cas9-mediated loss of Ena/VASP proteins reduced lamellipodial actin assembly and perturbed lamellipodial architecture, as evidenced by changed network geometry as well as reduction of filament length and number that was accompanied by abnormal Arp2/3 complex and heterodimeric capping protein accumulation. Loss of Ena/VASP function also abolished the formation of microspikes normally embedded in lamellipodia, but not of filopodia capable of emanating without lamellipodia. Ena/VASP-deficiency also impaired integrin-mediated adhesion accompanied by reduced traction forces exerted through these structures. Our data thus uncover novel Ena/VASP functions of these actin polymerases that are fully consistent with their promotion of cell migration
Exome sequencing in dementia with Lewy bodies.
Dementia with Lewy bodies (DLB) is the second most common form of degenerative dementia. Siblings of affected individuals are at greater risk of developing DLB, but little is known about the underlying genetic basis of the disease. We set out to determine whether mutations in known highly penetrant neurodegenerative disease genes are found in patients with DLB. Whole-exome sequencing was performed on 91 neuropathologically confirmed cases of DLB, supplemented by independent APOE genotyping. Genetic variants were classified using established criteria, and additional neuropathological examination was performed for putative mutation carriers. Likely pathogenic variants previously described as causing monogenic forms of neurodegenerative disease were found in 4.4% of patients with DLB. The APOE ɛ4 allele increased the risk of disease (P=0.0001), conferred a shorter disease duration (P=0.043) and earlier age of death (P=0.0015). In conclusion, although known pathogenic mutations in neurodegenerative disease genes are uncommon in DLB, known genetic risk factors are present in >60% of cases. APOE ɛ4 not only modifies disease risk, but also modulates the rate of disease progression. The reduced penetrance of reported pathogenic alleles explains the lack of a family history in most patients, and the presence of variants previously described as causing frontotemporal dementia suggests a mechanistic overlap between DLB and other neurodegenerative diseases.This study was funded by the NHS National Institute of Health Research Biomedical Research Unit for Lewy body dementia at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. Tissue for this study was provided by Newcastle Brain Tissue Resource, which is funded in part by a grant from the UK Medical Research Council and by Brains for Dementia Research, a joint venture between Alzheimer’s Society and Alzheimer’s Research UK. MJK is a Wellcome Trust Clinical Research Training Fellow. PFC is a Wellcome Trust Senior Fellow in Clinical Science and National Institute for Health Research Senior Investigator. He receives funding from the Medical Research Council and the National Institute for Health Research Biomedical Research Centre for Ageing and Age-Related Disease award to the Newcastle upon Tyne Foundation Hospitals National Health Service Trust. The funding sources had no role in study design, data collection/analysis, the writing of the paper or the decision of when or where to publish it. The views expressed here are the views of the authors and not necessarily those of the NHS, NIHR or the Department of Health.This is the final published version. It first appeared at http://www.nature.com/tp/journal/v6/n2/full/tp2015220a.html
Identification of functional differences between recombinant human α and β cardiac myosin motors
The myosin isoform composition of the heart is dynamic in health and disease and has been shown to affect contractile velocity and force generation. While different mammalian species express different proportions of α and β myosin heavy chain, healthy human heart ventricles express these isoforms in a ratio of about 1:9 (α:β) while failing human ventricles express no detectable α-myosin. We report here fast-kinetic analysis of recombinant human α and β myosin heavy chain motor domains. This represents the first such analysis of any human muscle myosin motor and the first of α-myosin from any species. Our findings reveal substantial isoform differences in individual kinetic parameters, overall contractile character, and predicted cycle times. For these parameters, α-subfragment 1 (S1) is far more similar to adult fast skeletal muscle myosin isoforms than to the slow β isoform despite 91% sequence identity between the motor domains of α- and β-myosin. Among the features that differentiate α- from β-S1: the ATP hydrolysis step of α-S1 is ~ten-fold faster than β-S1, α-S1 exhibits ~five-fold weaker actin affinity than β-S1, and actin·α-S1 exhibits rapid ADP release, which is >ten-fold faster than ADP release for β-S1. Overall, the cycle times are ten-fold faster for α-S1 but the portion of time each myosin spends tightly bound to actin (the duty ratio) is similar. Sequence analysis points to regions that might underlie the basis for this finding
Insights into the Importance of Hydrogen Bonding in the γ-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Serine 236†,‡
The active site of myosin contains a group of highly conserved amino acid residues whose roles in nucleotide hydrolysis and energy transduction might appear to be obvious from the initial structural and kinetic analyses but become less clear on deeper investigation. One such residue is Ser236 (Dictyostelium discoideum myosin II numbering) which was proposed to be involved in a hydrogen transfer network during γ-phosphate hydrolysis of ATP, which would imply a critical function in ATP hydrolysis and motility. The S236A mutant protein shows a comparatively small decrease in hydrolytic activity and motility, and thus this residue does not appear to be essential. To understand better the contribution of Ser236 to the function of myosin, structural and kinetic studies have been performed on the S236A mutant protein. The structures of the D. discoideum motor domain (S1dC) S236A mutant protein in complex with magnesium pyrophosphate, MgAMPPNP, and MgADP·vanadate have been determined. In contrast to the previous structure of wild-type S1dC, the S236A·MgAMPPNP complex crystallized in the closed state. Furthermore, transient-state kinetics showed a 4-fold reduction of the nucleotide release step, suggesting that the mutation stabilizes a closed active site. The structures show that a water molecule approximately adopts the location of the missing hydroxyl of Ser236 in the magnesium pyrophosphate and MgAMPPNP structures. This study suggests that the S236A mutant myosin proceeds via a different structural mechanism than wild-type myosin, where the alternate mechanism is able to maintain near normal transient-state kinetic values
Intravenous Oncolytic Vaccinia Virus Therapy Results in a Differential Immune Response between Cancer Patients
Pexa-Vec is an engineered Wyeth-strain vaccinia oncolytic virus (OV), which has been tested extensively in clinical trials, demonstrating enhanced cytotoxic T cell infiltration into tumours following treatment. Favourable immune consequences to Pexa-Vec include the induction of an interferon (IFN) response, followed by inflammatory cytokine/chemokine secretion. This promotes tumour immune infiltration, innate and adaptive immune cell activation and T cell priming, culminating in targeted tumour cell killing, i.e., an immunologically ‘cold’ tumour microenvironment is transformed into a ‘hot’ tumour. However, as with all immunotherapies, not all patients respond in a uniformly favourable manner. Our study herein, shows a differential immune response by patients to intravenous Pexa-Vec therapy, whereby some patients responded to the virus in a typical and expected manner, demonstrating a significant IFN induction and subsequent peripheral immune activation. However, other patients experienced a markedly subdued immune response and appeared to exhibit an exhausted phenotype at baseline, characterised by higher baseline immune checkpoint expression and regulatory T cell (Treg) levels. This differential baseline immunological profile accurately predicted the subsequent response to Pexa-Vec and may, therefore, enable the development of predictive biomarkers for Pexa-Vec and OV therapies more widely. If confirmed in larger clinical trials, these immunological biomarkers may enable a personalised approach, whereby patients with an exhausted baseline immune profile are treated with immune checkpoint blockade, with the aim of reversing immune exhaustion, prior to or alongside OV therapy
- …