32 research outputs found

    Mortality reduces overyielding in mixed Scots pine and European beech stands along a precipitation gradient in Europe

    Get PDF
    Many studies show that mixed species stands can have higher gross growth, or so-called overyielding, compared with monocultures. However, much less is known about mortality in mixed stands. Knowledge is lacking, for example, of how much of the gross growth is retained in the standing stock and how much is lost due to mor-tality. Here, we addressed this knowledge gap of mixed stand dynamics by evaluating 23 middle-aged, unthinned triplets of monospecific and mixed plots of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) repeatedly surveyed over 6-8 years throughout Europe. For explanation of technical terms in this abstract see Box 1.First, mixed stands produced more gross growth (+10%) but less net growth (-28%) compared with the weighted mean growth of monospecific stands. In monospecific stands, 73% of the gross growth was accumu-lated in the standing stock, whereas only 48% was accumulated in mixed stands. The gross overyielding of pine (2%) was lower than that of beech (18%). However, the net overyielding of beech was still 10%, whereas low growth and dropout of pine caused a substantial reduction from gross to net growth.Second, the mortality rates, the self-and alien-thinning strength, and the stem volume dropout were higher in mixed stands than monospecific stands. The main reason was the lower survival of pine, whereas beech persisted more similarly in mixed compared with monospecific stands.Third, we found a 10% higher stand density in mixed stands compared with monospecific stands at the first survey. This superiority decreased to 5% in the second survey.Fourth, the mixing proportion of Scots pine decreased from 46% to 44% between the first and second survey. The more than doubling of the segregation index (S) calculated by Pielou index (S increased from 0.2 to 0.5), indicated a strong tendency towards demixing due to pine.Fifth, we showed that with increasing water supply the dropout fraction of the gross growth in the mixture slightly decreased for pine, strongly increased for beech, and also increased for the stand as a whole. We discuss how the reduction of inter-specific competition by thinning may enable a continuous benefit of diversity and overyielding of mixed compared with monospecific stands of Scots pine and European beech

    Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L. ) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe

    Get PDF
    Mixing of complementary tree species may increase stand productivity, mitigate the effects of drought and other risks, and pave the way to forest production systems which may be more resource-use efficient and stable in the face of climate change. However, systematic empirical studies on mixing effects are still missing for many commercially important and widespread species combinations. Here we studied the growth of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) in mixed versus pure stands on 32 triplets located along a productivity gradient through Europe, reaching from Sweden to Bulgaria and from Spain to the Ukraine. Stand inventory and taking increment cores on the mainly 60-80 year-old trees and 0.02-1.55 ha sized, fully stocked plots provided insight how species mixing modifies the structure, dynamics and productivity compared with neighbouring pure stands. In mixture standing volume (+12 %), stand density (+20 %), basal area growth (+12 %), and stand volume growth (+8 %) were higher than the weighted mean of the neighbouring pure stands. Scots pine and European beech contributed rather equally to the overyielding and overdensity. In mixed stands mean diameter (+20 %) and height (+6 %) of Scots pine was ahead, while both diameter and height growth of European beech were behind (−8 %). The overyielding and overdensity were independent of the site index, the stand growth and yield, and climatic variables despite the wide variation in precipitation (520-1175 mm year−1), mean annual temperature (6-10.5 °C), and the drought index by de Martonne (28-61 mm °C−1) on the sites. Therefore, this species combination is potentially useful for increasing productivity across a wide range of site and climatic conditions. Given the significant overyielding of stand basal area growth but the absence of any relationship with site index and climatic variables, we hypothesize that the overyielding and overdensity results from several different types of interactions (light-, water-, and nutrient-related) that are all important in different circumstances. We discuss the relevance of the results for ecological theory and for the ongoing silvicultural transition from pure to mixed stands and their adaptation to climate change.The networking in this study has been sup-ported by COST Action FP1206 EuMIXFOR. All contributors thanktheir national funding institutions to establish, measure, and analysedata from the triplets. The first author also thanks the BayerischenStaatsforsten (BaySF) for supporting the establishment of the plots,the Bavarian State Ministry for Nutrition, Agriculture, and Forestryfor permanent support of the project W 07 ‘‘Long-term experimentalplots for forest growth and yield research’’ (# 7831-22209-2013) andthe German Science Foundation for providing the funds for the pro-jects PR 292/12-1 ‘‘Tree and stand-level growth reactions on droughtin mixed versus pure forests of Norway spruce and European beech’’.Thanks are also due to Ulrich Kern for the graphical artwork, and totwo anonymous reviewers for their constructive criticism

    European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests

    Get PDF
    Recent studies show that several tree species are spreading to higher latitudes and elevations due to climate change. European beech, presently dominating from the colline to the subalpine vegetation belt, is already present in upper montane subalpine forests and has a high potential to further advance to higher elevations in European mountain forests, where the temperature is predicted to further increase in the near future. Although essential for adaptive silviculture, it remains unknown whether the upward shift of beech could be assisted when it is mixed with Norway spruce or silver fir compared with mono-specific stands, as the species interactions under such conditions are hardly known. In this study, we posed the general hypotheses that the growth depending on age of European beech in mountain forests was similar in mono-specific and mixed-species stands and remained stable over time and space in the last two centuries. The scrutiny of these hypotheses was based on increment coring of 1240 dominant beech trees in 45 plots in mono-specific stands of beech and in 46 mixed mountain forests. We found that (i) on average, mean tree diameter increased linearly with age. The age trend was linear in both forest types, but the slope of the age–growth relationship was higher in mono-specific than in mixed mountain forests. (ii) Beech growth in mono-specific stands was stronger reduced with increasing elevation than that in mixed-species stands. (iii) Beech growth in mono-specific stands was on average higher than beech growth in mixed stands. However, at elevations > 1200 m, growth of beech in mixed stands was higher than that in mono-specific stands. Differences in the growth patterns among elevation zones are less pronounced now than in the past, in both mono-specific and mixed stands. As the higher and longer persisting growth rates extend the flexibility of suitable ages or size for tree harvest and removal, the longer-lasting growth may be of special relevance for multi-aged silviculture concepts. On top of their function for structure and habitat improvement, the remaining old trees may grow more in mass and value than assumed so far.The authors would like to acknowledge networking support by the COST (European Cooperation in Science and Technology) Action CLIMO (Climate-Smart Forestry in Mountain Regions—CA15226) financially supported by the EU Framework Programme for Research and Innovation HORIZON 2020. This publication is part of a project that has received funding from the European Union’s HORIZON 2020 research and innovation programme under the Marie SkƂodowska-Curie Grant Agreement No 778322. Thanks are also due to the European Union for funding the project ‘Mixed species forest management. Lowering risk, increasing resilience (REFORM)’ (# 2816ERA02S under the framework of Sumforest ERA-Net). Further, we would like to thank the Bayerische Staatsforsten (BaySF) for providing the observational plots and to the Bavarian State Ministry of Food, Agriculture, and Forestry for permanent support of the Project W 07 ‘Long-term experimental plots for forest growth and yield research’ (#7831-26625-2017). We also thank the Forest Research Institute, ERTI Sárvár, Hungary, for assistance and for providing observational plots. Furthermore, our work was partially supported by the SRDA via Project No. APVV-16-0325 and APVV-15-0265, the Ministry of Science and Higher Education of the Republic of Poland, the Project “EVA4.0” No. CZ.02.1.01/0.0/0.0/16_019/0000803 funded by OP RDE and the Project J4-1765 funded by the Slovenian Research Agency and also by the Bulgarian National Science Fund (BNSF) and the Project No. DCOST 01/3/19.10.2018

    Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect

    Get PDF
    The increasing disturbances in monocultures around the world are testimony to their instability under global change. Many studies have claimed that temporal stability of productivity increases with species richness, although the ecological fundamentals have mainly been investigated through diversity experiments. To adequately manage forest ecosystems, it is necessary to have a comprehensive understanding of the effect of mixing species on the temporal stability of productivity and the way in which it is influenced by climate conditions across large geographical areas. Here, we used a unique dataset of 261 stands combining pure and two-species mixtures of four relevant tree species over a wide range of climate conditions in Europe to examine the effect of species mixing on the level and temporal stability of productivity. Structural equation modelling was employed to further explore the direct and indirect influence of climate, overyielding, species asynchrony and additive effect (i.e. temporal stability expected from the species growth in monospecific stands) on temporal stability in mixed forests. We showed that by adding only one tree species to monocultures, the level (overyielding: +6%) and stability (temporal stability: +12%) of stand growth increased significantly. We identified the key effect of temperature on destabilizing stand growth, which may be mitigated by mixing species. We further confirmed asynchrony as the main driver of temporal stability in mixed stands, through both the additive effect and species interactions, which modify between-species asynchrony in mixtures in comparison to monocultures. Synthesis and applications. This study highlights the emergent properties associated with mixing two species, which result in resource efficient and temporally stable production systems. We reveal the negative impact of mean temperature on temporal stability of forest productivity and how the stabilizing effect of mixing two species can counterbalance this impact. The overyielding and temporal stability of growth addressed in this paper are essential for ecosystem services closely linked with the level and rhythm of forest growth. Our results underline that mixing two species can be a realistic and effective nature-based climate solution, which could contribute towards meeting EU climate target policies.Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effectpublishedVersio

    With increasing site quality asymmetric competition and mortality reduces Scots pine (Pinus sylvestris L.) stand structuring across Europe

    Get PDF
    Heterogeneity of structure can increase mechanical stability, stress resistance and resilience, biodiversity and many other functions and services of forest stands. That is why many silvicultural measures aim at enhancing structural diversity. However, the effectiveness and potential of structuring may depend on the site conditions. Here, we revealed how the stand structure is determined by site quality and results from site-dependent partitioning of growth and mortality among the trees. We based our study on 90 mature, even-aged, fully stocked monocultures of Scots pine (Pines sylvestris L.) sampled in 21 countries along a productivity gradient across Europe. A mini-simulation study further analyzed the site-dependency of the interplay between growth and mortality and the resulting stand structure. The overarching hypothesis was that the stand structure changes with site quality and results from the site-dependent asymmetry of competition and mortality.First, we show that Scots pine stands structure across Europe become more homogeneous with increasing site quality. The coefficient of variation and Gini coefficient of stem diameter and tree height continuously decreased, whereas Stand Density Index and stand basal area increased with site index.Second, we reveal a site-dependency of the growth distribution among the trees and the mortality. With increasing site index, the asymmetry of both competition and growth distribution increased and suggested, at first glance, an increase in stand heterogeneity. However, with increasing site index, mortality eliminates mainly small instead of all-sized trees, cancels the size variation and reduces the structural heterogeneity.Third, we modelled the site-dependent interplay between growth partitioning and mortality. By scenario runs for different site conditions, we can show how the site-dependent structure at the stand level emerges from the asymmetric competition and mortality at the tree level and how the interplay changes with increasing site quality across Europe.Our most interesting finding was that the growth partitioning became more asymmetric and structuring with increasing site quality, but that the mortality eliminated predominantly small trees, reduced their size variation and thus reversed the impact of site quality on the structure. Finally, the reverse effects of mode of growth partitioning and mortality on the stand structure resulted in the highest size variation on poor sites and decreased structural heterogeneity with increasing site quality. Since our results indicate where heterogeneous structures need silviculture interventions and where they emerge naturally, we conclude that these findings may improve system understanding and modelling and guide forest management aiming at structurally rich forests

    Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect

    Get PDF
    The increasing disturbances in monocultures around the world are testimony to their instability under global change. Many studies have claimed that temporal stability of productivity increases with species richness, although the ecological fundamentals have mainly been investigated through diversity experiments. To adequately manage forest ecosystems, it is necessary to have a comprehensive understanding of the effect of mixing species on the temporal stability of productivity and the way in which it is influenced by climate conditions across large geographical areas. Here, we used a unique dataset of 261 stands combining pure and two-species mixtures of four relevant tree species over a wide range of climate conditions in Europe to examine the effect of species mixing on the level and temporal stability of productivity. Structural equation modelling was employed to further explore the direct and indirect influence of climate, overyielding, species asynchrony and additive effect (i.e. temporal stability expected from the species growth in monospecific stands) on temporal stability in mixed forests. We showed that by adding only one tree species to monocultures, the level (overyielding: +6%) and stability (temporal stability: +12%) of stand growth increased significantly. We identified the key effect of temperature on destabilizing stand growth, which may be mitigated by mixing species. We further confirmed asynchrony as the main driver of temporal stability in mixed stands, through both the additive effect and species interactions, which modify between-species asynchrony in mixtures in comparison to monocultures. Synthesis and applications. This study highlights the emergent properties associated with mixing two species, which result in resource efficient and temporally stable production systems. We reveal the negative impact of mean temperature on temporal stability of forest productivity and how the stabilizing effect of mixing two species can counterbalance this impact. The overyielding and temporal stability of growth addressed in this paper are essential for ecosystem services closely linked with the level and rhythm of forest growth. Our results underline that mixing two species can be a realistic and effective nature-based climate solution, which could contribute towards meeting EU climate target policies

    Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect

    Get PDF
    The increasing disturbances in monocultures around the world are testimony to their instability under global change. Many studies have claimed that temporal stability of productivity increases with species richness, although the ecological fundamentals have mainly been investigated through diversity experiments. To adequately manage forest ecosystems, it is necessary to have a comprehensive understanding of the effect of mixing species on the temporal stability of productivity and the way in which it is influenced by climate conditions across large geographical areas. Here, we used a unique dataset of 261 stands combining pure and two-species mixtures of four relevant tree species over a wide range of climate conditions in Europe to examine the effect of species mixing on the level and temporal stability of productivity. Structural equation modelling was employed to further explore the direct and indirect influence of climate, overyielding, species asynchrony and additive effect (i.e. temporal stability expected from the species growth in monospecific stands) on temporal stability in mixed forests. We showed that by adding only one tree species to monocultures, the level (overyielding: +6%) and stability (temporal stability: +12%) of stand growth increased significantly. We identified the key effect of temperature on destabilizing stand growth, which may be mitigated by mixing species. We further confirmed asynchrony as the main driver of temporal stability in mixed stands, through both the additive effect and species interactions, which modify between-species asynchrony in mixtures in comparison to monocultures. Synthesis and applications. This study highlights the emergent properties associated with mixing two species, which result in resource efficient and temporally stable production systems. We reveal the negative impact of mean temperature on temporal stability of forest productivity and how the stabilizing effect of mixing two species can counterbalance this impact. The overyielding and temporal stability of growth addressed in this paper are essential for ecosystem services closely linked with the level and rhythm of forest growth. Our results underline that mixing two species can be a realistic and effective nature-based climate solution, which could contribute towards meeting EU climate target policies
    corecore